Mercurial > hg > Members > kono > Proof > galois
diff sym3n.agda @ 182:eb94265d2a39 fresh-list
Any based proof computation done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Nov 2020 13:13:58 +0900 |
parents | 57d475583f74 |
children | 59d12d02dfa8 |
line wrap: on
line diff
--- a/sym3n.agda Thu Nov 26 08:58:12 2020 +0900 +++ b/sym3n.agda Thu Nov 26 13:13:58 2020 +0900 @@ -37,83 +37,22 @@ p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl - t1 : FList 3 → FList 3 - t1 x = tl2 x x [] where - tl3 : (FL 3) → ( z : FList 3) → FList 3 → FList 3 - tl3 h [] w = w - tl3 h (x ∷# z) w = tl3 h z (FLinsert ( perm→FL [ FL→perm h , FL→perm x ] ) w ) - tl2 : ( x z : FList 3) → FList 3 → FList 3 - tl2 [] _ x = x - tl2 (h ∷# x) z w = tl2 x z (tl3 h z w) + open import Data.List.Fresh.Relation.Unary.Any + open import FLComm - stage10 : FList 3 - stage10 = {!!} -- t1 (Flist (fmax )) - - p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) - p1 = FL→perm ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) - p2 = FL→perm ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) - p3 = FL→perm ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) - p4 = FL→perm ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) - p5 = FL→perm ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) - t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] + stage3FList : CommFListN 3 2 ≡ cons (zero :: zero :: zero :: f0) [] (Level.lift tt) + stage3FList = refl - tt4 = plist [ p0 , p0 ] ∷ plist [ p1 , p0 ] ∷ plist [ p2 , p0 ] ∷ plist [ p3 , p0 ] ∷ plist [ p4 , p0 ] ∷ plist [ p5 , p1 ] ∷ - plist [ p0 , p1 ] ∷ plist [ p1 , p1 ] ∷ plist [ p2 , p1 ] ∷ plist [ p3 , p1 ] ∷ plist [ p4 , p1 ] ∷ plist [ p5 , p1 ] ∷ - plist [ p0 , p2 ] ∷ plist [ p1 , p2 ] ∷ plist [ p2 , p2 ] ∷ plist [ p3 , p2 ] ∷ plist [ p4 , p2 ] ∷ plist [ p5 , p2 ] ∷ - plist [ p0 , p3 ] ∷ plist [ p1 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p4 , p3 ] ∷ plist [ p5 , p3 ] ∷ - plist [ p0 , p4 ] ∷ plist [ p1 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p4 ] ∷ - plist [ p0 , p5 ] ∷ plist [ p1 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p5 ] ∷ - [] - - open _=p=_ - - stage1 : (x : Permutation 3 3) → Set (Level.suc Level.zero) - stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x - - open import logic - - pFL : ( g : Permutation 3 3) → { x : FL 3 } → perm→FL g ≡ x → g =p= FL→perm x - pFL g {x} refl = ptrans (psym (FL←iso g)) ( FL-inject refl ) - - open ≡-Reasoning - --- st01 : ( x y : Permutation 3 3) → x =p= p3 → y =p= p3 → x ∘ₚ y =p= p4 --- st01 x y s t = record { peq = λ q → ( begin --- (x ∘ₚ y) ⟨$⟩ʳ q --- ≡⟨ peq ( presp s t ) q ⟩ --- ( p3 ∘ₚ p3 ) ⟨$⟩ʳ q --- ≡⟨ peq p33=4 q ⟩ --- p4 ⟨$⟩ʳ q --- ∎ ) } - - st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) ] - - - stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) - stage12 = {!!} + solved1 : (x : Permutation 3 3) → deriving 2 x → x =p= pid + solved1 x dr = CommSolved 3 x ( CommFListN 3 2 ) stage3FList pf solved2 where + -- p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid + pf : perm→FL x ≡ FL0 → x =p= pid + pf eq = ptrans pf2 (ptrans pf0 p0id ) where + pf2 : x =p= FL→perm (perm→FL x) + pf2 = psym (FL←iso x) + pf0 : FL→perm (perm→FL x) =p= FL→perm FL0 + pf0 = pcong-Fp eq + solved2 : Any (perm→FL x ≡_) ( CommFListN 3 2 ) + solved2 = CommStage→ 3 2 x dr - solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid - solved1 _ uni = prefl - solved1 x (gen {f} {g} d d₁) with solved1 f d | solved1 g d₁ - ... | record { peq = f=e } | record { peq = g=e } = record { peq = λ q → genlem q } where - genlem : ( q : Fin 3 ) → g ⟨$⟩ʳ ( f ⟨$⟩ʳ q ) ≡ q - genlem q = begin - g ⟨$⟩ʳ ( f ⟨$⟩ʳ q ) - ≡⟨ g=e ( f ⟨$⟩ʳ q ) ⟩ - f ⟨$⟩ʳ q - ≡⟨ f=e q ⟩ - q - ∎ - solved1 x (ccong {f} {g} (record {peq = f=g}) d) with solved1 f d - ... | record { peq = f=e } = record { peq = λ q → cc q } where - cc : ( q : Fin 3 ) → x ⟨$⟩ʳ q ≡ q - cc q = begin - x ⟨$⟩ʳ q - ≡⟨ sym (f=g q) ⟩ - f ⟨$⟩ʳ q - ≡⟨ f=e q ⟩ - q - ∎ - solved1 _ (comm {g} {h} x y) = {!!} -