diff src/sym3.agda @ 331:ee6b8f4cbf4c default tip

safe mode
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 08 Jul 2024 16:48:09 +0900
parents e9de2bfef88d
children
line wrap: on
line diff
--- a/src/sym3.agda	Thu Oct 12 10:12:16 2023 +0900
+++ b/src/sym3.agda	Mon Jul 08 16:48:09 2024 +0900
@@ -1,4 +1,4 @@
-{-# OPTIONS  --safe #-}
+{-# OPTIONS --cubical-compatible --safe #-}
 
 open import Level hiding ( suc ; zero )
 open import Algebra
@@ -90,21 +90,11 @@
 
    open ≡-Reasoning
 
---   st01 : ( x y : Permutation 3 3) →   x =p= p3 →  y =p= p3 → x ∘ₚ  y =p= p4 
---   st01 x y s t = record { peq = λ q → ( begin
---         (x ∘ₚ y) ⟨$⟩ʳ q
---       ≡⟨ peq ( presp s t ) q ⟩
---          ( p3  ∘ₚ p3 ) ⟨$⟩ʳ q
---       ≡⟨ peq  p33=4 q  ⟩
---         p4 ⟨$⟩ʳ q
---       ∎ ) }
-
    st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm  ((suc (suc zero)) :: (suc zero) :: (zero :: f0))  ]
 
    st02 :  ( g h : Permutation 3 3) →  ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4)
    st02 g h with perm→FL g in ge | perm→FL h in he 
    ... | (zero :: (zero :: (zero :: f0))) | t = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) )
-   ... | s | (zero :: (zero :: (zero :: f0))) | se = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) )
    ... | (zero :: (suc zero) :: (zero :: f0 )) |  (zero :: (suc zero) :: (zero :: f0 )) =
         case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )
    ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) = 
@@ -158,22 +148,10 @@
           case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ))
    
    stage12  :  (x : Permutation 3 3) → stage1 x →  ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 )
-   stage12 x (comm {g} {h} x1 y1 ) = st02 g h
-   stage12 _ (ccong {y} x=y sx) with stage12 y sx
-   ... | case1 id = case1 ( ptrans (psym x=y ) id )
-   ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ ))
-   ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ ))
-
+   stage12 x (comm {g} {h} x1 y1 eq ) = st02 g h
 
    solved1 :  (x : Permutation 3 3) →  Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid
-   solved1 x (ccong {f} {g} (record {peq = f=g}) d) with solved1 f d
-   ... | record { peq = f=e }  =  record  { peq = λ q → cc q } where
-      cc : ( q : Fin 3 ) → x ⟨$⟩ʳ q ≡ q
-      cc q = begin
-             x ⟨$⟩ʳ q ≡⟨ sym (f=g q) ⟩
-             f ⟨$⟩ʳ q ≡⟨ f=e q ⟩
-             q ∎ 
-   solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y
+   solved1 _ (comm {g} {h} x y eq) with stage12 g x | stage12 h y
    ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl)
    ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h)
    ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g)