Mercurial > hg > Members > kono > Proof > galois
diff src/sym3.agda @ 331:ee6b8f4cbf4c default tip
safe mode
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2024 16:48:09 +0900 |
parents | e9de2bfef88d |
children |
line wrap: on
line diff
--- a/src/sym3.agda Thu Oct 12 10:12:16 2023 +0900 +++ b/src/sym3.agda Mon Jul 08 16:48:09 2024 +0900 @@ -1,4 +1,4 @@ -{-# OPTIONS --safe #-} +{-# OPTIONS --cubical-compatible --safe #-} open import Level hiding ( suc ; zero ) open import Algebra @@ -90,21 +90,11 @@ open ≡-Reasoning --- st01 : ( x y : Permutation 3 3) → x =p= p3 → y =p= p3 → x ∘ₚ y =p= p4 --- st01 x y s t = record { peq = λ q → ( begin --- (x ∘ₚ y) ⟨$⟩ʳ q --- ≡⟨ peq ( presp s t ) q ⟩ --- ( p3 ∘ₚ p3 ) ⟨$⟩ʳ q --- ≡⟨ peq p33=4 q ⟩ --- p4 ⟨$⟩ʳ q --- ∎ ) } - st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) ] st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) st02 g h with perm→FL g in ge | perm→FL h in he ... | (zero :: (zero :: (zero :: f0))) | t = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) - ... | s | (zero :: (zero :: (zero :: f0))) | se = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) = @@ -158,22 +148,10 @@ case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) - stage12 x (comm {g} {h} x1 y1 ) = st02 g h - stage12 _ (ccong {y} x=y sx) with stage12 y sx - ... | case1 id = case1 ( ptrans (psym x=y ) id ) - ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) - ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) - + stage12 x (comm {g} {h} x1 y1 eq ) = st02 g h solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid - solved1 x (ccong {f} {g} (record {peq = f=g}) d) with solved1 f d - ... | record { peq = f=e } = record { peq = λ q → cc q } where - cc : ( q : Fin 3 ) → x ⟨$⟩ʳ q ≡ q - cc q = begin - x ⟨$⟩ʳ q ≡⟨ sym (f=g q) ⟩ - f ⟨$⟩ʳ q ≡⟨ f=e q ⟩ - q ∎ - solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y + solved1 _ (comm {g} {h} x y eq) with stage12 g x | stage12 h y ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g)