Mercurial > hg > Members > kono > Proof > galois
view FLutil.agda @ 161:047efc82be47
sized fresh list
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Nov 2020 20:43:01 +0900 |
parents | 254f3acb2091 |
children |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module FLutil where open import Level hiding ( suc ; zero ) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions open import logic open import nat infixr 100 _::_ data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) data _f<_ : {n : ℕ } (x : FL n ) (y : FL n) → Set where f<n : {m : ℕ } {xn yn : Fin (suc m) } {xt yt : FL m} → xn Data.Fin.< yn → (xn :: xt) f< ( yn :: yt ) f<t : {m : ℕ } {xn : Fin (suc m) } {xt yt : FL m} → xt f< yt → (xn :: xt) f< ( xn :: yt ) FLeq : {n : ℕ } {xn yn : Fin (suc n)} {x : FL n } {y : FL n} → xn :: x ≡ yn :: y → ( xn ≡ yn ) × (x ≡ y ) FLeq refl = refl , refl f-<> : {n : ℕ } {x : FL n } {y : FL n} → x f< y → y f< x → ⊥ f-<> (f<n x) (f<n x₁) = nat-<> x x₁ f-<> (f<n x) (f<t lt2) = nat-≡< refl x f-<> (f<t lt) (f<n x) = nat-≡< refl x f-<> (f<t lt) (f<t lt2) = f-<> lt lt2 f-≡< : {n : ℕ } {x : FL n } {y : FL n} → x ≡ y → y f< x → ⊥ f-≡< refl (f<n x) = nat-≡< refl x f-≡< refl (f<t lt) = f-≡< refl lt FLcmp : {n : ℕ } → Trichotomous {Level.zero} {FL n} _≡_ _f<_ FLcmp f0 f0 = tri≈ (λ ()) refl (λ ()) FLcmp (xn :: xt) (yn :: yt) with <-fcmp xn yn ... | tri< a ¬b ¬c = tri< (f<n a) (λ eq → nat-≡< (cong toℕ (proj₁ (FLeq eq)) ) a) (λ lt → f-<> lt (f<n a) ) ... | tri> ¬a ¬b c = tri> (λ lt → f-<> lt (f<n c) ) (λ eq → nat-≡< (cong toℕ (sym (proj₁ (FLeq eq)) )) c) (f<n c) ... | tri≈ ¬a refl ¬c with FLcmp xt yt ... | tri< a ¬b ¬c₁ = tri< (f<t a) (λ eq → ¬b (proj₂ (FLeq eq) )) (λ lt → f-<> lt (f<t a) ) ... | tri≈ ¬a₁ refl ¬c₁ = tri≈ (λ lt → f-≡< refl lt ) refl (λ lt → f-≡< refl lt ) ... | tri> ¬a₁ ¬b c = tri> (λ lt → f-<> lt (f<t c) ) (λ eq → ¬b (proj₂ (FLeq eq) )) (f<t c) f<-trans : {n : ℕ } { x y z : FL n } → x f< y → y f< z → x f< z f<-trans {suc n} (f<n x) (f<n x₁) = f<n ( Data.Fin.Properties.<-trans x x₁ ) f<-trans {suc n} (f<n x) (f<t y<z) = f<n x f<-trans {suc n} (f<t x<y) (f<n x) = f<n x f<-trans {suc n} (f<t x<y) (f<t y<z) = f<t (f<-trans x<y y<z) infixr 250 _f<?_ _f<?_ : {n : ℕ} → (x y : FL n ) → Dec (x f< y ) x f<? y with FLcmp x y ... | tri< a ¬b ¬c = yes a ... | tri≈ ¬a refl ¬c = no ( ¬a ) ... | tri> ¬a ¬b c = no ( ¬a ) _f≤_ : {n : ℕ } (x : FL n ) (y : FL n) → Set _f≤_ x y = (x ≡ y ) ∨ (x f< y ) FL0 : {n : ℕ } → FL n FL0 {zero} = f0 FL0 {suc n} = zero :: FL0 fmax : { n : ℕ } → FL n fmax {zero} = f0 fmax {suc n} = fromℕ< a<sa :: fmax {n} fmax< : { n : ℕ } → {x : FL n } → ¬ (fmax f< x ) fmax< {suc n} {x :: y} (f<n lt) = nat-≤> (fmax1 x) lt where fmax1 : {n : ℕ } → (x : Fin (suc n)) → toℕ x ≤ toℕ (fromℕ< {n} a<sa) fmax1 {zero} zero = z≤n fmax1 {suc n} zero = z≤n fmax1 {suc n} (suc x) = s≤s (fmax1 x) fmax< {suc n} {x :: y} (f<t lt) = fmax< {n} {y} lt fmax¬ : { n : ℕ } → {x : FL n } → ¬ ( x ≡ fmax ) → x f< fmax fmax¬ {zero} {f0} ne = ⊥-elim ( ne refl ) fmax¬ {suc n} {x} ne with FLcmp x fmax ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( ne b) ... | tri> ¬a ¬b c = ⊥-elim (fmax< c) FL0≤ : {n : ℕ } → FL0 {n} f≤ fmax FL0≤ {zero} = case1 refl FL0≤ {suc zero} = case1 refl FL0≤ {suc n} with <-fcmp zero (fromℕ< {n} a<sa) ... | tri< a ¬b ¬c = case2 (f<n a) ... | tri≈ ¬a b ¬c with FL0≤ {n} ... | case1 x = case1 (subst₂ (λ j k → (zero :: FL0) ≡ (j :: k ) ) b x refl ) ... | case2 x = case2 (subst (λ k → (zero :: FL0) f< (k :: fmax)) b (f<t x) ) open import Data.Nat.Properties using ( ≤-trans ; <-trans ) fsuc : { n : ℕ } → (x : FL n ) → x f< fmax → FL n fsuc {n} (x :: y) (f<n lt) = fromℕ< fsuc1 :: y where fsuc2 : toℕ x < toℕ (fromℕ< a<sa) fsuc2 = lt fsuc1 : suc (toℕ x) < n fsuc1 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) ) fsuc (x :: y) (f<t lt) = x :: fsuc y lt flist1 : {n : ℕ } (i : ℕ) → i < suc n → List (FL n) → List (FL n) → List (FL (suc n)) flist1 zero i<n [] _ = [] flist1 zero i<n (a ∷ x ) z = ( zero :: a ) ∷ flist1 zero i<n x z flist1 (suc i) (s≤s i<n) [] z = flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z flist1 (suc i) i<n (a ∷ x ) z = ((fromℕ< i<n ) :: a ) ∷ flist1 (suc i) i<n x z flist : {n : ℕ } → FL n → List (FL n) flist {zero} f0 = f0 ∷ [] flist {suc n} (x :: y) = flist1 n a<sa (flist y) (flist y) fr22 : fsuc (zero :: zero :: f0) (fmax¬ (λ ())) ≡ (suc zero :: zero :: f0) fr22 = refl fr4 : List (FL 4) fr4 = Data.List.reverse (flist (fmax {4}) ) -- fr5 : List (List ℕ) -- fr5 = map plist (map FL→perm (Data.List.reverse (flist (fmax {4}) ))) open import Relation.Binary as B hiding (Decidable; _⇔_) open import Data.Sum.Base as Sum -- inj₁ open import Relation.Nary using (⌊_⌋) open import Size open import Data.Unit.Polymorphic.Base using (⊤) module _ {a r : Level } (A : Set a) (R : Rel A r) where data List# (i : Size) : Set (a ⊔ r) fresh : ∀{i} (a : A) (as : List# i ) → Set r data List# i where [] : List# i cons : {j : Size< i} (a : A) (as : List# j) → fresh a as → List# i infixr 5 _∷#_ pattern _∷#_ x xs = cons x xs _ fresh a [] = ⊤ fresh a (x ∷# xs) = R a x × fresh a xs FList : (n : ℕ ) → { i : Size} → Set FList n {i} = List# (FL n) ⌊ _f<?_ ⌋ i fr1 : FList 3 fr1 = ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) ∷# ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) ∷# [] fr0 : FList 0 fr0 = [] frn : (n : ℕ) → FList n → FList (suc n) frn n fl = frn1 fmax fl [] where frn1 : (f : FL n) → FList n → FList (suc n) → FList (suc n) frn1 f0 _ x = x frn1 (v :: f) x = {!!} -- ∀Flist : {n : ℕ } → FL n → FList n