Mercurial > hg > Members > kono > Proof > galois
view FLutil.agda @ 221:14b518eecf82
P Q
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Dec 2020 13:11:25 +0900 |
parents | 47df9343efa9 |
children | 9f86424a09b1 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module FLutil where open import Level hiding ( suc ; zero ) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation -- hiding ([_,_]) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties as DNP open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions open import logic open import nat infixr 100 _::_ data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) data _f<_ : {n : ℕ } (x : FL n ) (y : FL n) → Set where f<n : {m : ℕ } {xn yn : Fin (suc m) } {xt yt : FL m} → xn Data.Fin.< yn → (xn :: xt) f< ( yn :: yt ) f<t : {m : ℕ } {xn : Fin (suc m) } {xt yt : FL m} → xt f< yt → (xn :: xt) f< ( xn :: yt ) FLeq : {n : ℕ } {xn yn : Fin (suc n)} {x : FL n } {y : FL n} → xn :: x ≡ yn :: y → ( xn ≡ yn ) × (x ≡ y ) FLeq refl = refl , refl FLpos : {n : ℕ} → FL (suc n) → Fin (suc n) FLpos (x :: _) = x f-<> : {n : ℕ } {x : FL n } {y : FL n} → x f< y → y f< x → ⊥ f-<> (f<n x) (f<n x₁) = nat-<> x x₁ f-<> (f<n x) (f<t lt2) = nat-≡< refl x f-<> (f<t lt) (f<n x) = nat-≡< refl x f-<> (f<t lt) (f<t lt2) = f-<> lt lt2 f-≡< : {n : ℕ } {x : FL n } {y : FL n} → x ≡ y → y f< x → ⊥ f-≡< refl (f<n x) = nat-≡< refl x f-≡< refl (f<t lt) = f-≡< refl lt FLcmp : {n : ℕ } → Trichotomous {Level.zero} {FL n} _≡_ _f<_ FLcmp f0 f0 = tri≈ (λ ()) refl (λ ()) FLcmp (xn :: xt) (yn :: yt) with <-fcmp xn yn ... | tri< a ¬b ¬c = tri< (f<n a) (λ eq → nat-≡< (cong toℕ (proj₁ (FLeq eq)) ) a) (λ lt → f-<> lt (f<n a) ) ... | tri> ¬a ¬b c = tri> (λ lt → f-<> lt (f<n c) ) (λ eq → nat-≡< (cong toℕ (sym (proj₁ (FLeq eq)) )) c) (f<n c) ... | tri≈ ¬a refl ¬c with FLcmp xt yt ... | tri< a ¬b ¬c₁ = tri< (f<t a) (λ eq → ¬b (proj₂ (FLeq eq) )) (λ lt → f-<> lt (f<t a) ) ... | tri≈ ¬a₁ refl ¬c₁ = tri≈ (λ lt → f-≡< refl lt ) refl (λ lt → f-≡< refl lt ) ... | tri> ¬a₁ ¬b c = tri> (λ lt → f-<> lt (f<t c) ) (λ eq → ¬b (proj₂ (FLeq eq) )) (f<t c) f<-trans : {n : ℕ } { x y z : FL n } → x f< y → y f< z → x f< z f<-trans {suc n} (f<n x) (f<n x₁) = f<n ( Data.Fin.Properties.<-trans x x₁ ) f<-trans {suc n} (f<n x) (f<t y<z) = f<n x f<-trans {suc n} (f<t x<y) (f<n x) = f<n x f<-trans {suc n} (f<t x<y) (f<t y<z) = f<t (f<-trans x<y y<z) infixr 250 _f<?_ _f<?_ : {n : ℕ} → (x y : FL n ) → Dec (x f< y ) x f<? y with FLcmp x y ... | tri< a ¬b ¬c = yes a ... | tri≈ ¬a refl ¬c = no ( ¬a ) ... | tri> ¬a ¬b c = no ( ¬a ) _f≤_ : {n : ℕ } (x : FL n ) (y : FL n) → Set _f≤_ x y = (x ≡ y ) ∨ (x f< y ) FL0 : {n : ℕ } → FL n FL0 {zero} = f0 FL0 {suc n} = zero :: FL0 fmax : { n : ℕ } → FL n fmax {zero} = f0 fmax {suc n} = fromℕ< a<sa :: fmax {n} fmax< : { n : ℕ } → {x : FL n } → ¬ (fmax f< x ) fmax< {suc n} {x :: y} (f<n lt) = nat-≤> (fmax1 x) lt where fmax1 : {n : ℕ } → (x : Fin (suc n)) → toℕ x ≤ toℕ (fromℕ< {n} a<sa) fmax1 {zero} zero = z≤n fmax1 {suc n} zero = z≤n fmax1 {suc n} (suc x) = s≤s (fmax1 x) fmax< {suc n} {x :: y} (f<t lt) = fmax< {n} {y} lt fmax¬ : { n : ℕ } → {x : FL n } → ¬ ( x ≡ fmax ) → x f< fmax fmax¬ {zero} {f0} ne = ⊥-elim ( ne refl ) fmax¬ {suc n} {x} ne with FLcmp x fmax ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( ne b) ... | tri> ¬a ¬b c = ⊥-elim (fmax< c) FL0≤ : {n : ℕ } → FL0 {n} f≤ fmax FL0≤ {zero} = case1 refl FL0≤ {suc zero} = case1 refl FL0≤ {suc n} with <-fcmp zero (fromℕ< {n} a<sa) ... | tri< a ¬b ¬c = case2 (f<n a) ... | tri≈ ¬a b ¬c with FL0≤ {n} ... | case1 x = case1 (subst₂ (λ j k → (zero :: FL0) ≡ (j :: k ) ) b x refl ) ... | case2 x = case2 (subst (λ k → (zero :: FL0) f< (k :: fmax)) b (f<t x) ) open import Data.Nat.Properties using ( ≤-trans ; <-trans ) fsuc : { n : ℕ } → (x : FL n ) → x f< fmax → FL n fsuc {n} (x :: y) (f<n lt) = fromℕ< fsuc1 :: y where fsuc1 : suc (toℕ x) < n fsuc1 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) ) fsuc (x :: y) (f<t lt) = x :: fsuc y lt -- fsuc0 : { n : ℕ } → (x : FL n ) → FL n -- fsuc0 {n} (x :: y) (f<n lt) = fromℕ< fsuc2 :: y where -- fsuc2 : suc (toℕ x) < n -- fsuc2 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) ) -- fsuc0 (x :: y) (f<t lt) = x :: fsuc y lt open import Data.Maybe open import fin fpredm : { n : ℕ } → (x : FL n ) → Maybe (FL n) fpredm f0 = nothing fpredm (x :: y) with fpredm y ... | just y1 = just (x :: y1) fpredm (zero :: y) | nothing = nothing fpredm (suc x :: y) | nothing = just (fin+1 x :: fmax) ¬<FL0 : {n : ℕ} {y : FL n} → ¬ y f< FL0 ¬<FL0 {suc n} {zero :: y} (f<t lt) = ¬<FL0 {n} {y} lt fpred : { n : ℕ } → (x : FL n ) → FL0 f< x → FL n fpred (zero :: y) (f<t lt) = zero :: fpred y lt fpred (x :: y) (f<n lt) with FLcmp FL0 y ... | tri< a ¬b ¬c = x :: fpred y a ... | tri> ¬a ¬b c = ⊥-elim (¬<FL0 c) fpred {suc _} (suc x :: y) (f<n lt) | tri≈ ¬a b ¬c = fin+1 x :: fmax fpred< : { n : ℕ } → (x : FL n ) → (lt : FL0 f< x ) → fpred x lt f< x fpred< (zero :: y) (f<t lt) = f<t (fpred< y lt) fpred< (suc x :: y) (f<n lt) with FLcmp FL0 y ... | tri< a ¬b ¬c = f<t ( fpred< y a) ... | tri> ¬a ¬b c = ⊥-elim (¬<FL0 c) ... | tri≈ ¬a refl ¬c = f<n fpr1 where fpr1 : {n : ℕ } {x : Fin n} → fin+1 x Data.Fin.< suc x fpr1 {suc _} {zero} = s≤s z≤n fpr1 {suc _} {suc x} = s≤s fpr1 flist1 : {n : ℕ } (i : ℕ) → i < suc n → List (FL n) → List (FL n) → List (FL (suc n)) flist1 zero i<n [] _ = [] flist1 zero i<n (a ∷ x ) z = ( zero :: a ) ∷ flist1 zero i<n x z flist1 (suc i) (s≤s i<n) [] z = flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z flist1 (suc i) i<n (a ∷ x ) z = ((fromℕ< i<n ) :: a ) ∷ flist1 (suc i) i<n x z flist : {n : ℕ } → FL n → List (FL n) flist {zero} f0 = f0 ∷ [] flist {suc n} (x :: y) = flist1 n a<sa (flist y) (flist y) fr22 : fsuc (zero :: zero :: f0) (fmax¬ (λ ())) ≡ (suc zero :: zero :: f0) fr22 = refl fr4 : List (FL 4) fr4 = Data.List.reverse (flist (fmax {4}) ) -- fr5 : List (List ℕ) -- fr5 = map plist (map FL→perm (Data.List.reverse (flist (fmax {4}) ))) FL1 : List ℕ → List ℕ FL1 [] = [] FL1 (x ∷ y) = suc x ∷ FL1 y FL→plist : {n : ℕ} → FL n → List ℕ FL→plist {0} f0 = [] FL→plist {suc n} (zero :: y) = zero ∷ FL1 (FL→plist y) FL→plist {suc n} (suc x :: y) with FL→plist y ... | [] = zero ∷ [] ... | x1 ∷ t = suc x1 ∷ FL2 x t where FL2 : {n : ℕ} → Fin n → List ℕ → List ℕ FL2 zero y = zero ∷ FL1 y FL2 (suc i) [] = zero ∷ [] FL2 (suc i) (x ∷ y) = suc x ∷ FL2 i y tt0 = (# 2) :: (# 1) :: (# 0) :: zero :: f0 tt1 = FL→plist tt0 -- tt2 = plist ( FL→perm tt0 ) open _∧_ find-zero : {n i : ℕ} → List ℕ → i < n → Fin n ∧ List ℕ find-zero [] i<n = record { proj1 = fromℕ< i<n ; proj2 = [] } find-zero x (s≤s z≤n) = record { proj1 = fromℕ< (s≤s z≤n) ; proj2 = x } find-zero (zero ∷ y) (s≤s (s≤s i<n)) = record { proj1 = fromℕ< (s≤s (s≤s i<n)) ; proj2 = y } find-zero (suc x ∷ y) (s≤s (s≤s i<n)) with find-zero y (s≤s i<n) ... | record { proj1 = i ; proj2 = y1 } = record { proj1 = suc i ; proj2 = suc x ∷ y1 } plist→FL : {n : ℕ} → List ℕ → FL n plist→FL {zero} [] = f0 plist→FL {suc n} [] = zero :: plist→FL {n} [] plist→FL {zero} x = f0 plist→FL {suc n} x with find-zero x a<sa ... | record { proj1 = i ; proj2 = y } = i :: plist→FL y tt2 = 2 ∷ 1 ∷ 0 ∷ 3 ∷ [] tt3 : FL 4 tt3 = plist→FL tt2 -- tt4 = proj1 (find-zero {5} {4} tt2 a<sa) , proj2 (find-zero {5} {4} tt2 a<sa) open import Relation.Binary as B hiding (Decidable; _⇔_) open import Data.Sum.Base as Sum -- inj₁ open import Relation.Nary using (⌊_⌋) open import Data.List.Fresh hiding ([_]) FList : (n : ℕ ) → Set FList n = List# (FL n) ⌊ _f<?_ ⌋ fr1 : FList 3 fr1 = ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) ∷# ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) ∷# [] open import Data.Product open import Relation.Nullary.Decidable hiding (⌊_⌋) -- open import Data.Bool hiding (_<_ ; _≤_ ) open import Data.Unit.Base using (⊤ ; tt) -- fresh a [] = ⊤ -- fresh a (x ∷# xs) = R a x × fresh a xs -- toWitness -- ttf< : {n : ℕ } → {x a : FL n } → x f< a → T (isYes (x f<? a)) -- ttf< {n} {x} {a} x<a with x f<? a -- ... | yes y = subst (λ k → Data.Bool.T k ) refl tt -- ... | no nn = ⊥-elim ( nn x<a ) ttf : {n : ℕ } {x a : FL (n)} → x f< a → (y : FList (n)) → fresh (FL (n)) ⌊ _f<?_ ⌋ a y → fresh (FL (n)) ⌊ _f<?_ ⌋ x y ttf _ [] fr = Level.lift tt ttf {_} {x} {a} lt (cons a₁ y x1) (lift lt1 , x2 ) = (Level.lift (fromWitness (ttf1 lt1 lt ))) , ttf (ttf1 lt1 lt) y x1 where ttf1 : True (a f<? a₁) → x f< a → x f< a₁ ttf1 t x<a = f<-trans x<a (toWitness t) -- by https://gist.github.com/aristidb/1684202 FLinsert : {n : ℕ } → FL n → FList n → FList n FLfresh : {n : ℕ } → (a x : FL (suc n) ) → (y : FList (suc n) ) → a f< x → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a (FLinsert x y) FLinsert {zero} f0 y = f0 ∷# [] FLinsert {suc n} x [] = x ∷# [] FLinsert {suc n} x (cons a y x₁) with FLcmp x a ... | tri≈ ¬a b ¬c = cons a y x₁ ... | tri< lt ¬b ¬c = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf lt y x₁) FLinsert {suc n} x (cons a [] x₁) | tri> ¬a ¬b lt = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) FLinsert {suc n} x (cons a y yr) | tri> ¬a ¬b a<x = cons a (FLinsert x y) (FLfresh a x y a<x yr ) FLfresh a x [] a<x (Level.lift tt) = Level.lift (fromWitness a<x) , Level.lift tt FLfresh a x (cons b [] (Level.lift tt)) a<x (Level.lift a<b , a<y) with FLcmp x b ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , Level.lift tt ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , Level.lift tt ... | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt FLfresh a x (cons b y br) a<x (Level.lift a<b , a<y) with FLcmp x b ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , ttf (toWitness a<b) y br ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , ttf a<x y br FLfresh a x (cons b [] br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt FLfresh a x (cons b (cons a₁ y x₁) br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = Level.lift a<b , FLfresh a x (cons a₁ y x₁) a<x a<y fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1 -- open import Data.List.Fresh.Relation.Unary.All -- fr7 = append ( ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) ∷# [] ) fr1 ( ({!!} , {!!} ) ∷ [] ) Flist : {n : ℕ } (i : ℕ) → i < suc n → FList n → FList n → FList (suc n) Flist zero i<n [] _ = [] Flist zero i<n (a ∷# x ) z = FLinsert ( zero :: a ) (Flist zero i<n x z ) Flist (suc i) (s≤s i<n) [] z = Flist i (<-trans i<n a<sa) z z Flist (suc i) i<n (a ∷# x ) z = FLinsert ((fromℕ< i<n ) :: a ) (Flist (suc i) i<n x z ) ∀Flist : {n : ℕ } → FL n → FList n ∀Flist {zero} f0 = f0 ∷# [] ∀Flist {suc n} (x :: y) = Flist n a<sa (∀Flist y) (∀Flist y) ¬x<FL0 : {n : ℕ} {x : FL n} → ¬ ( x f< FL0 ) ¬x<FL0 {suc n} {zero :: y} (f<t not) = ¬x<FL0 {n} {y} not fr8 : FList 4 fr8 = ∀Flist fmax fr9 : FList 3 fr9 = ∀Flist fmax open import Data.List.Fresh.Relation.Unary.Any open import Data.List.Fresh.Relation.Unary.All x∈FLins : {n : ℕ} → (x : FL n ) → (xs : FList n) → Any (x ≡_ ) (FLinsert x xs) x∈FLins {zero} f0 [] = here refl x∈FLins {zero} f0 (cons f0 xs x) = here refl x∈FLins {suc n} x [] = here refl x∈FLins {suc n} x (cons a xs x₁) with FLcmp x a ... | tri< x<a ¬b ¬c = here refl ... | tri≈ ¬a b ¬c = here b x∈FLins {suc n} x (cons a [] x₁) | tri> ¬a ¬b a<x = there ( here refl ) x∈FLins {suc n} x (cons a (cons a₁ xs x₂) x₁) | tri> ¬a ¬b a<x = there ( x∈FLins x (cons a₁ xs x₂) ) nextAny : {n : ℕ} → {x h : FL n } → {L : FList n} → {hr : fresh (FL n) ⌊ _f<?_ ⌋ h L } → Any (x ≡_ ) L → Any (x ≡_ ) (cons h L hr ) nextAny (here x₁) = there (here x₁) nextAny (there any) = there (there any) insAny : {n : ℕ} → {x h : FL n } → (xs : FList n) → Any (x ≡_ ) xs → Any (x ≡_ ) (FLinsert h xs) insAny {zero} {f0} {f0} (cons a L xr) (here refl) = here refl insAny {zero} {f0} {f0} (cons a L xr) (there any) = insAny {zero} {f0} {f0} L any insAny {suc n} {x} {h} (cons a L xr) any with FLcmp h a ... | tri< x<a ¬b ¬c = there any ... | tri≈ ¬a b ¬c = any insAny {suc n} {a} {h} (cons a [] (Level.lift tt)) (here refl) | tri> ¬a ¬b c = here refl insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (here refl) | tri> ¬a ¬b c = here refl insAny {suc n} {x} {h} (cons a (cons a₁ L x₁) xr) (there any) | tri> ¬a ¬b c = there (insAny (cons a₁ L x₁) any) {-# TERMINATING #-} AnyFList : {n : ℕ } → (x : FL n ) → Any (x ≡_ ) (∀Flist fmax) AnyFList {zero} f0 = here refl AnyFList {suc zero} (zero :: f0) = here refl AnyFList {suc (suc n)} (x :: y) = subst (λ k → Any (_≡_ (k :: y)) (Flist (suc n) a<sa (∀Flist fmax) (∀Flist fmax) )) (fromℕ<-toℕ _ _) ( AnyFList1 (suc n) (toℕ x) a<sa (∀Flist fmax) (∀Flist fmax) fin<n fin<n (AnyFList y) (AnyFList y)) where AnyFList1 : (i x : ℕ) → (i<n : i < suc (suc n) ) → (L L1 : FList (suc n) ) → (x<n : x < suc (suc n) ) → x < suc i → Any (y ≡_ ) L → Any (y ≡_ ) L1 → Any (((fromℕ< x<n) :: y) ≡_ ) (Flist i i<n L L1) AnyFList1 zero x i<n [] L1 (s≤s x<i) _ () _ AnyFList1 zero zero i<n (cons y L xr) L1 x<n (s≤s z≤n) (here refl) any = x∈FLins (zero :: y) (Flist 0 i<n L L1) AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (there wh) any = insAny _ (AnyFList1 zero zero i<n L L1 x<n (s≤s z≤n) wh any) AnyFList1 (suc i) x (s≤s i<n) (cons y L x₁) L1 x<n (s≤s x<i) (here refl) any with <-fcmp (fromℕ< x<n) (fromℕ< (s≤s i<n)) ... | tri< a ¬b ¬c = insAny (Flist (suc i) (s≤s i<n) L L1) (af1 L ) where af1 : (L : FList (suc n)) → Any (_≡_ (fromℕ< x<n :: y)) (Flist (suc i) (s≤s i<n) L L1) af1 [] = AnyFList1 i x (<-trans i<n a<sa) L1 L1 x<n (subst₂ (λ j k → j < k ) (toℕ-fromℕ< _) (cong suc (toℕ-fromℕ< _)) a ) any any af1 (cons a L x) = insAny (Flist (suc i) (s≤s i<n) L L1) (af1 L ) ... | tri≈ ¬a b ¬c = subst (λ k → Any (_≡_ (fromℕ< x<n :: y)) (FLinsert k (Flist (suc i) (s≤s i<n) L L1) )) (cong (λ k → k :: y) b) (x∈FLins (fromℕ< x<n :: y) (Flist (suc i) (s≤s i<n) L L1)) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> x<i (subst₂ (λ j k → suc (suc k) ≤ j ) (toℕ-fromℕ< _) (toℕ-fromℕ< _) c) ) AnyFList1 (suc i) x (s≤s i<n) (cons a (cons a₁ L x₂) x₁) L1 x<n (s≤s x<i) (there wh) any with FLcmp a a₁ ... | tri< a₂ ¬b ¬c = insAny _ (AnyFList1 (suc i) x (s≤s i<n) (cons a₁ L x₂) L1 x<n (s≤s x<i) wh any ) AnyFList1 (suc i) x (s≤s i<n) (cons a (cons .a L x₂) (Level.lift () , snd)) L1 x<n (s≤s x<i) (there wh) any | tri≈ ¬a refl ¬c -- FLinsert membership module FLMB { n : ℕ } where FL-Setoid : Setoid Level.zero Level.zero FL-Setoid = record { Carrier = FL n ; _≈_ = _≡_ ; isEquivalence = record { sym = sym ; refl = refl ; trans = trans }} open import Data.List.Fresh.Membership.Setoid FL-Setoid FLinsert-mb : (x : FL n ) → (xs : FList n) → x ∈ FLinsert x xs FLinsert-mb x xs = x∈FLins {n} x xs