view FLComm.agda @ 215:189ce31dc52a

Q Q1
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 06 Dec 2020 06:40:38 +0900
parents b438377a7e11
children 658789e98091
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
module FLComm (n : ℕ) where

open import Level renaming ( suc to Suc ; zero to Zero ) hiding (lift)
open import Data.Fin hiding ( _<_  ; _≤_ ; _-_ ; _+_ ; _≟_)
open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp )
open import Data.Fin.Permutation  
open import Data.Nat.Properties 
open import Relation.Binary.PropositionalEquality hiding ( [_] ) renaming ( sym to ≡-sym )
open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev )
open import Data.Product hiding (_,_ )
open import Relation.Nullary 
open import Data.Unit
open import Data.Empty
open import  Relation.Binary.Core 
open import  Relation.Binary.Definitions hiding (Symmetric )
open import logic
open import nat

open import FLutil
open import Putil
import Solvable 
open import Symmetric

-- infixr  100 _::_

open import Relation.Nary using (⌊_⌋)
open import Data.List.Fresh hiding ([_])
open import Data.List.Fresh.Relation.Unary.Any

open import Algebra 
open Group (Symmetric n) hiding (refl)
open Solvable (Symmetric n) 
open _∧_
-- open import Relation.Nary using (⌊_⌋)
open import Relation.Nullary.Decidable hiding (⌊_⌋)

-- Flist :  {n : ℕ } (i : ℕ) → i < suc n → FList n → FList n → FList (suc n)
-- Flist zero i<n [] _ = []
-- Flist zero i<n (a ∷# x ) z  = FLinsert ( zero :: a ) (Flist zero i<n x z )
-- Flist (suc i) (s≤s i<n) [] z  = Flist i (<-trans i<n a<sa) z z 
-- Flist (suc i) i<n (a ∷# x ) z  = FLinsert ((fromℕ< i<n ) :: a ) (Flist (suc i) i<n x z )
-- 
-- ∀Flist : {n : ℕ } → FL n → FList n
-- ∀Flist {zero} f0 = f0 ∷# [] 
-- Flist {suc n} (x :: y)  = Flist n a<sa (∀Flist y) (∀Flist y)   

-- all FL
record AnyFL (n : ℕ) (p : FL n) : Set where
   field
     anyList : FList n
     anyP : (x : FL n) → p f≤ x →  Any ( _≡ x ) anyList 

open import fin
open AnyFL
anyFL : (n : ℕ ) → AnyFL n FL0
anyFL zero = record { anyList =  f0 ∷# []  ; anyP = any00 } where
   any00 : (p : FL zero) →  FL0 f≤ p → Any (_≡ p) (f0 ∷# [])
   any00 f0 (case1 refl) = here refl
anyFL (suc n) = any01 n (anyList (anyFL n)) (anyP (anyFL n) FL0 (case1 refl) ) {!!} where
   -- any03 : AnyFL (suc n) (fromℕ< a<sa :: fmax) → AnyFL (suc n) FL0
   -- loop on i 
   any02 : (i : ℕ ) → (i<n : i < suc n ) → (a : FL n) → AnyFL (suc n) (fromℕ< i<n  :: a) → AnyFL (suc n) (zero :: a)
   any02 zero (s≤s z≤n) a any = any
   any02 (suc i) (s≤s i<n) a any = any02 i (<-trans i<n a<sa) a record { anyList = cons ((fromℕ< (s≤s i<n )) :: a) (anyList any) any07 ; anyP = any08 } where
      any07 : fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< (s≤s i<n) :: a) (anyList any)
      any07 = {!!}
      any08 : (x : FL (suc n)) → (fromℕ< (<-trans i<n a<sa) :: a) f≤ x → Any (_≡ x) (cons (fromℕ< (s≤s i<n) :: a) (anyList any) any07 )
      any08 = {!!}
   -- loop on a 
   any03 :  (L : FList n) → (a : FL n) →  fresh (FL n) ⌊ _f<?_ ⌋ a L  →  AnyFL (suc n) (fromℕ< a<sa :: a ) → AnyFL (suc n) FL0
   any03 [] a ar any = {!!} -- any02 n a<sa a any
   any03 (cons b L br) a ( Data.Product._,_ (Level.lift a<b)_) any = any03 L b br record { anyList = anyList any04 ; anyP = any05 } where
      any04 : AnyFL (suc n) (zero :: a)
      any04 = any02 n a<sa a any
      any05 : (x : FL (suc n)) → (fromℕ< a<sa :: b) f≤ x → Any (_≡ x) (anyList any04) -- 0<fmax : zero Data.Fin.< fromℕ< a<sa
      any05 x mb≤x  = anyP any04 x (any06 a b x (toWitness a<b) mb≤x) where
         any06 : {n : ℕ } → (a b : FL n) → (x : FL (suc n)) → a f< b → (fromℕ< {n} a<sa :: b) f≤ x → (zero :: a) f≤ x 
         any06 {suc n} a b x a<b (case1 refl) = case2 (f<n 0<fmax)
         any06 {suc n} a b x a<b (case2 mb<x) = case2 (f<-trans (f<n 0<fmax) mb<x) 
   any01 : (i : ℕ ) → (L : FList n) → Any (_≡ FL0) L → AnyFL (suc n) fmax → AnyFL (suc n) FL0 
   any01 zero [] ()
   any01 (suc i) [] ()
   any01 zero (cons a L x)    _ any = {!!}
   any01 (suc i) (cons .FL0 L x) (here refl) any = any01 i L {!!} {!!} -- can't happen
   any01 (suc i) (cons a L ar) (there b) any = any03 L a ar {!!}

tl3 : (FL n) → ( z : FList n) → FList n → FList n
tl3 h [] w = w
tl3 h (x ∷# z) w = tl3 h z (FLinsert ( perm→FL [ FL→perm h , FL→perm x ] ) w )
tl2 : ( x z : FList n) → FList n →  FList n
tl2 [] _ x = x
tl2 (h ∷# x) z w = tl2 x z (tl3 h z w)

CommFList  :  FList n →  FList n
CommFList x =  tl2 x x [] 

CommFListN  : ℕ  →  FList n
CommFListN  0 = ∀Flist fmax
CommFListN  (suc i) = CommFList (CommFListN i)

-- all comm cobmbination in P and Q
record AnyComm (P Q : FList n) : Set where
   field
     commList : FList n
     commAny : (p q : FL n) → Any (p ≡_) P →  Any (q ≡_) Q → Any ( _≡ perm→FL [ FL→perm p , FL→perm q ] ) commList

open AnyComm
anyComm : (P Q : FList n) → AnyComm P Q
anyComm [] [] = record { commList = [] ; commAny = λ _ _ () }
anyComm [] (cons q Q qr) = record { commList = [] ; commAny = λ _ _ () }
anyComm (cons p P pr) [] = record { commList = [] ; commAny = λ _ _ _ () }
anyComm (cons p P pr) Q = anyc0n Q Q where
  anyc0n : (Q Q1 : FList n) → AnyComm (cons p P pr) Q
  anyc00 : (Q1 : FList n) (q : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ q Q1 → fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1))
  anyc00 = {!!}
  anyc01 :  (Q1 : FList n)  (q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q1 qr) →
    Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ])  (commList (anyc0n Q Q1)) (anyc00 Q1 q qr)) 
  anyc01 Q1 q qr p q   (here refl)  (here refl)  = here refl
  anyc01 Q1 q qr p q₁  (here refl)  (there anyq) = there (commAny (anyc0n  Q Q1) p q₁ (here refl) ? ) 
  anyc01 Q1 q qr p₁ q  (there anyp) (here refl)  with commAny (anyc0n Q []) p₁ q (there anyp) {!!} --  Any (_≡_ q) Q
  ... | t = {!!}
   where
    -- anyc02 Q p₁ q qr anyp where
    anyc02 :  {P : FList n} {p₂ : FL n} {pr₂ : fresh (FL n) ⌊ _f<?_ ⌋ p₂ P}
           → (Q1 : FList n) (p₁ q : FL n) → (qr : fresh (FL n) ⌊ _f<?_ ⌋ q Q1 ) → Any (_≡_ p₁) (cons p₂ P pr₂)
           → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) (anyc00 Q1 q qr)) 
    anyc02 {P} Q1 p₁ q qr (here refl) = {!!}
    anyc02 {P} Q1 p₁ q qr (there any) = {!!}
  anyc01 Q1 q qr p₁ q₁ (there anyp) (there anyq) = there (commAny (anyc0n Q Q1) p₁ q₁ (there anyp) ? )
  anyc0n Q [] = record { commList = (commList (anyComm P Q)) ; commAny = ? }
  anyc0n Q (cons q Q1 qr ) = record { commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyc0n Q Q1)) ? 
                                 ; commAny = ? }

-- {-# TERMINATING #-}
CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i )
CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x)
CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where
   G = perm→FL g
   H = perm→FL h

   -- tl3 case
   commc :  (L3 L1 : FList n) →  Any (_≡_ (perm→FL [  FL→perm G , FL→perm H ])) L3 
           →  Any (_≡_ (perm→FL [ FL→perm G , FL→perm H ])) (tl3 G L1 L3)
   commc L3 [] any = any
   commc L3 (cons a L1 _) any = commc (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) L1 (insAny _ any)
   comm6 : perm→FL [ FL→perm G , FL→perm H ] ≡ perm→FL [ g , h ]
   comm6 = pcong-pF (comm-resp (FL←iso _) (FL←iso _))  
   comm3 : (L1 : FList n) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 L3)
   comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_  k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) )
       comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 )
   comm3 (cons H L1 x₁) (here refl) L3 = subst (λ k → Any (_≡_ k) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3))) comm6
       (commc (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) L1 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3))
   comm3 (cons a L  _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3)

   -- tl2 case
   comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ]  ≡_) (tl2 L L1 L3)
   comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where
       comm8 : (L L4 L2 : FList n) → (a : FL n) 
            → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2)
            → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L L2))
       comm8← : (L L4 L2 : FList n) → (a : FL n)  → ¬ ( a ≡ perm→FL g )
           →  Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L L2))
           →  Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2)
       comm9← : (L4 L2 : FList n) → (a a₁ : FL n) → ¬ ( a ≡ perm→FL g )
           → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2))
           → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) 
       --  Any (_≡_ (perm→FL [ g , h ])) (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) → Any (_≡_ (perm→FL [ g , h ])) L2
       comm9← [] L2 a a₁ not any = {!!}
       comm9← (cons a₂ L4 x) L2 a a₁ not any = comm8 L1 L4 L2 a₂
           (comm9← L4 L2 a a₁ not
           (comm8← L1 L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2 ) a₂ {!!} any)) 
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a₂ L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2))) →
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2))
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2)
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a₂ L1 L2))
       comm8← [] L4 L2 a _ any = any 
       comm8← (cons a₁ L x) L4 L2 a not any  = comm8← L  L4 L2 a not
            (comm9← L4 (tl3 a L L2 ) a a₁ not (subst (λ k →  Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1  k )) {!!} any ))
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2))) →
       -- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) (tl3 a L L2)))
       comm9 : (L4 L2 : FList n) → (a a₁ : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) →
                                                   Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2))
       comm8 [] L4 L2 a any = any
       comm8 (cons a₁ L x) L4 L2 a any =  comm8 L  L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a  (comm9 L4 L2 a a₁ any)
       comm9 [] L2 a a₁ any = insAny _ any
       comm9 (cons a₂ L4 x) L2 a a₁ any = comm8 L1 L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a₂ (comm9 L4 L2 a a₁ (comm8← L1 L4 L2 a₂ {!!} any))
       -- found g, we have to walk thru till the end
       comm7 : (L L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L L1 (tl3 G L1 L3))
       -- at the end, find h
       comm7 [] L3 = comm3 L1 b L3  
       -- add n path
       comm7 (cons a L4 xr) L3 = comm8 L1 L4 (tl3 G L1 L3) a (comm7 L4 L3)
   -- accumerate tl3
   comm2 (cons x L xr) L1 (there a) b L3 = comm2 L L1 a b (tl3 x L1 L3)
CommStage→ (suc i) x (ccong {f} {x} eq p) = subst (λ k → Any (k ≡_) (tl2 (CommFListN i) (CommFListN i) [])) (comm4 eq) (CommStage→ (suc i) f p ) where
   comm4 : f =p= x →  perm→FL f ≡ perm→FL x
   comm4 = pcong-pF

CommSolved : (x : Permutation n n) → (y : FList n) → y ≡ FL0 ∷# [] → (FL→perm (FL0 {n}) =p= pid ) → Any (perm→FL x ≡_) y → x =p= pid
CommSolved x .(cons FL0 [] (Level.lift tt)) refl eq0 (here eq) = FLpid _ eq eq0