Mercurial > hg > Members > kono > Proof > galois
view Symmetric.agda @ 128:206fc12e5c36
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 05 Sep 2020 10:34:53 +0900 |
parents | c68956f6c3ad |
children |
line wrap: on
line source
module Symmetric where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Product open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ) renaming (reverse to rev ) open import nat fid : {p : ℕ } → Fin p → Fin p fid x = x -- Data.Fin.Permutation.id pid : {p : ℕ } → Permutation p p pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } -- Data.Fin.Permutation.flip pinv : {p : ℕ } → Permutation p p → Permutation p p pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where field peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q open _=p=_ prefl : {p : ℕ } { x : Permutation p p } → x =p= x peq (prefl {p} {x}) q = refl psym : {p : ℕ } { x y : Permutation p p } → x =p= y → y =p= x peq (psym {p} {x} {y} eq ) q = sym (peq eq q) ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y → y =p= z → x =p= z peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q) peqˡ : {p : ℕ }{ x y : Permutation p p } → x =p= y → (q : Fin p) → x ⟨$⟩ˡ q ≡ y ⟨$⟩ˡ q peqˡ {p} {x} {y} eq q = begin x ⟨$⟩ˡ q ≡⟨ sym ( inverseˡ y ) ⟩ y ⟨$⟩ˡ (y ⟨$⟩ʳ ( x ⟨$⟩ˡ q )) ≡⟨ cong (λ k → y ⟨$⟩ˡ k ) (sym (peq eq _ )) ⟩ y ⟨$⟩ˡ (x ⟨$⟩ʳ ( x ⟨$⟩ˡ q )) ≡⟨ cong (λ k → y ⟨$⟩ˡ k ) ( inverseʳ x ) ⟩ y ⟨$⟩ˡ q ∎ where open ≡-Reasoning presp : { p : ℕ } {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v) presp {p} {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q) lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) passoc : { p : ℕ } (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z)) passoc x y z = record { peq = λ q → refl } p-inv : { p : ℕ } {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q p-inv {p} {i} {j} i=j q = begin i ⟨$⟩ˡ q ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j) ) ⟩ i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (peq i=j _ )) ⟩ i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ inverseˡ i ⟩ j ⟨$⟩ˡ q ∎ where open ≡-Reasoning Symmetric : ℕ → Group Level.zero Level.zero Symmetric p = record { Carrier = Permutation p p ; _≈_ = _=p=_ ; _∙_ = _∘ₚ_ ; ε = pid ; _⁻¹ = pinv ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym } ; ∙-cong = presp } ; assoc = passoc } ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } )) } ; inverse = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} )) ; ⁻¹-cong = λ i=j → record { peq = λ q → p-inv i=j q } } }