Mercurial > hg > Members > kono > Proof > galois
view sym3.agda @ 70:32004c9a70b1
sym2 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 22:37:21 +0900 |
parents | sym5.agda@fb1ccedf5853 |
children | 405c1f727ffe |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym3 where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation sym3solvable : solvable (Symmetric 3) solvable.dervied-length sym3solvable = 2 solvable.end sym3solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 3) -- open Group (Symmetric 2) using (_⁻¹) p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0 = record { peq = p00 } where p00 : (q : Fin 3) → (FL→perm ((# 0) :: ((# 0) :: ((# 0) :: f0))) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q) p00 zero = refl p00 (suc zero) = refl p00 (suc (suc zero)) = refl open _=p=_ solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid solved1 = {!!}