Mercurial > hg > Members > kono > Proof > galois
view Putil.agda @ 57:518d364a58a3
shrink worked
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Aug 2020 19:23:08 +0900 |
parents | e26f784cd6b1 |
children | 80d61b6776d3 |
line wrap: on
line source
module Putil where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ) renaming (reverse to rev ) open import nat open import Symmetric open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import fin -- An inductive construction of permutation -- we already have refl and trans in the Symmetric Group pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc n) → Fin (suc n) p→ zero = zero p→ (suc x) = suc ( perm ⟨$⟩ˡ x) p← : Fin (suc n) → Fin (suc n) p← zero = zero p← (suc x) = suc ( perm ⟨$⟩ʳ x) piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc x) = cong (λ k → suc k ) (inverseˡ perm) piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc x) = cong (λ k → suc k ) (inverseʳ perm) pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc (suc n)) → Fin (suc (suc n)) p→ zero = suc zero p→ (suc zero) = zero p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) ) p← : Fin (suc (suc n)) → Fin (suc (suc n)) p← zero = suc zero p← (suc zero) = zero p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) ) piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc zero) = refl piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc zero) = refl piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) -- enumeration psawpn : {n : ℕ} → 1 < n → Permutation n n psawpn {suc zero} (s≤s ()) psawpn {suc n} (s≤s (s≤s x)) = pswap pid pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n pfill1 0 _ perm = perm pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) ) -- -- psawpim (inseert swap at position m ) -- not easy to write directory beacause left-inverse-of may contains Fin relations -- psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) ) n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j n≤ (zero) {j} = z≤n n≤ (suc i) {j} = s≤s ( n≤ i ) lem0 : {n : ℕ } → n ≤ n lem0 {zero} = z≤n lem0 {suc n} = s≤s lem0 lem00 : {n m : ℕ } → n ≡ m → n ≤ m lem00 refl = lem0 -- pconcat : {n m : ℕ } → Permutation m m → Permutation n n → Permutation (m + n) (m + n) -- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ? -- inductivley enmumerate permutations -- from n-1 length create n length inserting new element at position m -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) ) -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ [] -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ [] pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) pins {_} {zero} _ = pid pins {suc _} {suc zero} _ = pswap pid pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) pins1 _ zero _ = pid pins1 zero _ _ = pid pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n refl-≤s ) plist : {n : ℕ} → Permutation n n → List ℕ plist {0} perm = [] plist {suc j} perm = rev (plist1 j a<sa) where n = suc j plist1 : (i : ℕ ) → i < n → List ℕ plist1 zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ [] plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) open import logic -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] → 0 ∷ 1 ∷ 2 ∷ [] shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (fromℕ n) ≡ fromℕ n → Permutation n n shrink {n} perm pn=n = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where sh3 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ˡ (fin+1 x)) ≡ n ) sh3 x eq = ⊥-elim ( nat-≡< sh31 fin<n ) where sh31 : toℕ x ≡ n sh31 = begin toℕ x ≡⟨ sym fin+1-toℕ ⟩ toℕ (fin+1 x) ≡⟨ cong (λ k → toℕ k ) (sym ( inverseʳ perm)) ⟩ toℕ (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ (fin+1 x))) ≡⟨ cong (λ k → toℕ (perm ⟨$⟩ʳ k )) (sym (toℕ→from eq)) ⟩ toℕ (perm ⟨$⟩ʳ fromℕ n) ≡⟨ cong ( λ k → toℕ (perm ⟨$⟩ʳ k )) (sym pn=n) ⟩ toℕ (perm ⟨$⟩ʳ (perm ⟨$⟩ˡ (fromℕ n) )) ≡⟨ cong (λ k → toℕ k ) ( inverseʳ perm ) ⟩ toℕ (fromℕ n) ≡⟨ toℕ-fromℕ _ ⟩ n ∎ where open ≡-Reasoning sh4 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ʳ (fin+1 x)) ≡ n ) sh4 x eq = ⊥-elim ( nat-≡< sh41 fin<n ) where sh41 : toℕ x ≡ n sh41 = begin toℕ x ≡⟨ sym fin+1-toℕ ⟩ toℕ (fin+1 x) ≡⟨ cong (λ k → toℕ k ) (sym ( inverseˡ perm)) ⟩ toℕ (perm ⟨$⟩ˡ (perm ⟨$⟩ʳ (fin+1 x))) ≡⟨ cong (λ k → toℕ (perm ⟨$⟩ˡ k )) (sym (toℕ→from eq)) ⟩ toℕ ((perm ⟨$⟩ˡ fromℕ n)) ≡⟨ cong (λ k → toℕ k) pn=n ⟩ toℕ (fromℕ n) ≡⟨ toℕ-fromℕ _ ⟩ n ∎ where open ≡-Reasoning sh5 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ˡ (fin+1 x)) > n ) sh5 x lt = ⊥-elim ( nat-≤> lt (fin<n {suc n} {perm ⟨$⟩ˡ (fin+1 x)})) sh6 : (x : Fin n) → ¬ ( toℕ (perm ⟨$⟩ʳ (fin+1 x)) > n ) sh6 x lt = ⊥-elim ( nat-≤> lt (fin<n {suc n} {perm ⟨$⟩ʳ (fin+1 x)})) shlem→ : (x : Fin n ) → toℕ (perm ⟨$⟩ˡ (fin+1 x)) < n shlem→ x with <-cmp (toℕ (perm ⟨$⟩ˡ (fin+1 x))) n shlem→ x | tri< a ¬b ¬c = a shlem→ x | tri≈ ¬a b ¬c = ⊥-elim ( sh3 x b ) shlem→ x | tri> ¬a ¬b c = ⊥-elim ( sh5 x c ) shlem← : (x : Fin n) → toℕ (perm ⟨$⟩ʳ (fin+1 x)) < n shlem← x with <-cmp (toℕ (perm ⟨$⟩ʳ (fin+1 x))) n shlem← x | tri< a ¬b ¬c = a shlem← x | tri≈ ¬a b ¬c = ⊥-elim ( sh4 x b ) shlem← x | tri> ¬a ¬b c = ⊥-elim ( sh6 x c ) p→ : (x : Fin n ) → Fin n p→ x = fromℕ≤ (shlem→ x) p← : Fin n → Fin n p← x = fromℕ≤ (shlem← x) ff : { x y n : ℕ } → (x ≡ y ) → (x<n : x < n) → (y<n : y < n) → fromℕ≤ x<n ≡ fromℕ≤ y<n ff refl _ _ = lemma10 refl -- a : (toℕ (Inverse.to perm Π.⟨$⟩ fin+1 x)) < n -- a₁ : (toℕ (Inverse.from perm Π.⟨$⟩ fin+1 (fromℕ≤ a))) < n piso← : (x : Fin n ) → p→ ( p← x ) ≡ x piso← x with <-cmp (toℕ (perm ⟨$⟩ʳ (fin+1 x))) n piso← x | tri< a ¬b ¬c with <-cmp (toℕ (perm ⟨$⟩ˡ (fin+1 (fromℕ≤ a)))) n piso← x | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = begin fromℕ≤ a₁ ≡⟨ ff sh1 a₁ (toℕ<n x) ⟩ fromℕ≤ (toℕ<n x) ≡⟨ fromℕ≤-toℕ _ _ ⟩ x ∎ where open ≡-Reasoning sh1 : toℕ (Inverse.from perm Π.⟨$⟩ fin+1 (fromℕ≤ a)) ≡ toℕ x sh1 = begin toℕ (Inverse.from perm Π.⟨$⟩ fin+1 (fromℕ≤ a)) ≡⟨ cong (λ k → toℕ (Inverse.from perm Π.⟨$⟩ k)) (fin+1≤ a ) ⟩ toℕ (Inverse.from perm Π.⟨$⟩ (fromℕ≤ (<-trans a a<sa ) )) ≡⟨ cong (λ k → toℕ (Inverse.from perm Π.⟨$⟩ k)) (fromℕ≤-toℕ (Inverse.to perm Π.⟨$⟩ (fin+1 x)) (<-trans a a<sa) ) ⟩ toℕ (Inverse.from perm Π.⟨$⟩ ( Inverse.to perm Π.⟨$⟩ (fin+1 x) )) ≡⟨ cong (λ k → toℕ k) (inverseˡ perm) ⟩ toℕ (fin+1 x) ≡⟨ fin+1-toℕ ⟩ toℕ x ∎ piso← x | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim ( sh3 (fromℕ≤ a) b ) piso← x | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim ( sh5 _ c ) piso← x | tri≈ ¬a b ¬c = ⊥-elim ( sh4 x b ) piso← x | tri> ¬a ¬b c = ⊥-elim ( sh6 x c ) piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x piso→ x with <-cmp (toℕ (perm ⟨$⟩ˡ (fin+1 x))) n piso→ x | tri< a ¬b ¬c with <-cmp (toℕ (perm ⟨$⟩ʳ (fin+1 (fromℕ≤ a)))) n piso→ x | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = begin fromℕ≤ a₁ ≡⟨ ff sh2 a₁ (toℕ<n x) ⟩ fromℕ≤ (toℕ<n x) ≡⟨ fromℕ≤-toℕ _ _ ⟩ x ∎ where open ≡-Reasoning sh2 : toℕ (Inverse.to perm Π.⟨$⟩ fin+1 (fromℕ≤ a)) ≡ toℕ x sh2 = begin toℕ (Inverse.to perm Π.⟨$⟩ fin+1 (fromℕ≤ a)) ≡⟨ cong (λ k → toℕ (Inverse.to perm Π.⟨$⟩ k)) (fin+1≤ a ) ⟩ toℕ (Inverse.to perm Π.⟨$⟩ (fromℕ≤ (<-trans a a<sa ) )) ≡⟨ cong (λ k → toℕ (Inverse.to perm Π.⟨$⟩ k)) (fromℕ≤-toℕ (Inverse.from perm Π.⟨$⟩ (fin+1 x)) (<-trans a a<sa) ) ⟩ toℕ (Inverse.to perm Π.⟨$⟩ ( Inverse.from perm Π.⟨$⟩ (fin+1 x) )) ≡⟨ cong (λ k → toℕ k) (inverseʳ perm) ⟩ toℕ (fin+1 x) ≡⟨ fin+1-toℕ ⟩ toℕ x ∎ piso→ x | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim ( sh4 (fromℕ≤ a) b ) piso→ x | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim ( sh6 _ c ) piso→ x | tri≈ ¬a b ¬c = ⊥-elim ( sh3 x b ) piso→ x | tri> ¬a ¬b c = ⊥-elim ( sh5 x c ) FL→perm : {n : ℕ } → FL n → Permutation n n FL→perm f0 = pid FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) t1 = plist (shrink (pid {3} ∘ₚ (pins (n≤ 1))) refl) t3 = plist ( FL→perm ((# 1) :: ((# 0) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (0 ∷ 1 ∷ 2 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 0) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (0 ∷ 2 ∷ 1 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 0 ∷ 2 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 1) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 0 ∷ 1 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 2) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 2 ∷ 0 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 2) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 1 ∷ 0 ∷ []) ∷ ∷ plist ( (flip (FL→perm ((# 1) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))))) ∷ plist ( (flip (FL→perm ((# 1) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) ∘ₚ (FL→perm ((# 1) :: (((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))) )) ∷ [] perm→FL : {n : ℕ } → Permutation n n → FL n perm→FL {zero} perm = f0 perm→FL {suc n} perm = (perm ⟨$⟩ˡ fromℕ≤ a<sa ) :: perm→FL ( shrink fl1 {!!} ) where fl1 : Permutation (suc n) (suc n) fl1 = perm ∘ₚ pinv ( pins (fin<n {n} {{!!}})) fl1=pprep : perm =p= pprep ( shrink fl1 {!!} ) fl1=pprep = {!!} FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl FL→iso (x :: fl) = {!!} --with FL→iso fl -- ... | t = {!!} open _=p=_ FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm FL←iso {0} perm = record { peq = λ () } FL←iso {suc n} perm = {!!} where fl0 : {n : ℕ } → (fl : FL n ) → {!!} fl0 = {!!} all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) all-perm n = pls6 n where lem1 : {i n : ℕ } → i ≤ n → i < suc n lem1 z≤n = s≤s z≤n lem1 (s≤s lt) = s≤s (lem1 lt) lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n ∷ x) pls5 : ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls5 n [] x = x pls5 n (h ∷ x) y = pls5 n x (pls4 n n lem0 h y) pls6 : ( n : ℕ ) → List (Permutation (suc n) (suc n)) pls6 zero = pid ∷ [] pls6 (suc n) = pls5 (suc n) (rev (pls6 n) ) [] -- rev to put id first pls : (n : ℕ ) → List (List ℕ ) pls n = Data.List.map plist (all-perm n) where