Mercurial > hg > Members > kono > Proof > galois
view src/sym3.agda @ 274:691b2ee844ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Jan 2023 01:16:38 +0900 |
parents | 6d1619d9f880 |
children | 77f01da94c4e |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym3 where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import FLutil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym3solvable : solvable (Symmetric 3) solvable.dervied-length sym3solvable = 2 solvable.end sym3solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 3) p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) p1 = FL→perm ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) p2 = FL→perm ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) p3 = FL→perm ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) p4 = FL→perm ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) p5 = FL→perm ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] t1 = plist [ p0 , p0 ] ∷ plist [ p1 , p0 ] ∷ plist [ p2 , p0 ] ∷ plist [ p3 , p0 ] ∷ plist [ p4 , p0 ] ∷ plist [ p5 , p1 ] ∷ plist [ p0 , p1 ] ∷ plist [ p1 , p1 ] ∷ plist [ p2 , p1 ] ∷ plist [ p3 , p1 ] ∷ plist [ p4 , p1 ] ∷ plist [ p5 , p1 ] ∷ plist [ p0 , p2 ] ∷ plist [ p1 , p2 ] ∷ plist [ p2 , p2 ] ∷ plist [ p3 , p2 ] ∷ plist [ p4 , p2 ] ∷ plist [ p5 , p2 ] ∷ plist [ p0 , p3 ] ∷ plist [ p1 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p4 , p3 ] ∷ plist [ p5 , p3 ] ∷ plist [ p0 , p4 ] ∷ plist [ p1 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p4 ] ∷ plist [ p0 , p5 ] ∷ plist [ p1 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p5 ] ∷ [] open _=p=_ stage1 : (x : Permutation 3 3) → Set (Level.suc Level.zero) stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x open import logic p33=4 : ( p3 ∘ₚ p3 ) =p= p4 p33=4 = pleq _ _ refl p44=3 : ( p4 ∘ₚ p4 ) =p= p3 p44=3 = pleq _ _ refl p34=0 : ( p3 ∘ₚ p4 ) =p= pid p34=0 = pleq _ _ refl p43=0 : ( p4 ∘ₚ p3 ) =p= pid p43=0 = pleq _ _ refl com33 : [ p3 , p3 ] =p= pid com33 = pleq _ _ refl com44 : [ p4 , p4 ] =p= pid com44 = pleq _ _ refl com34 : [ p3 , p4 ] =p= pid com34 = pleq _ _ refl com43 : [ p4 , p3 ] =p= pid com43 = pleq _ _ refl pFL : ( g : Permutation 3 3) → { x : FL 3 } → perm→FL g ≡ x → g =p= FL→perm x pFL g {x} refl = ptrans (psym (FL←iso g)) ( FL-inject refl ) open ≡-Reasoning -- st01 : ( x y : Permutation 3 3) → x =p= p3 → y =p= p3 → x ∘ₚ y =p= p4 -- st01 x y s t = record { peq = λ q → ( begin -- (x ∘ₚ y) ⟨$⟩ʳ q -- ≡⟨ peq ( presp s t ) q ⟩ -- ( p3 ∘ₚ p3 ) ⟨$⟩ʳ q -- ≡⟨ peq p33=4 q ⟩ -- p4 ⟨$⟩ʳ q -- ∎ ) } st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) ] st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 ))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | ((suc (suc zero)) :: (zero :: (zero :: f0 )))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) stage12 x (comm {g} {h} x1 y1 ) = st02 g h stage12 _ (ccong {y} x=y sx) with stage12 y sx ... | case1 id = case1 ( ptrans (psym x=y ) id ) ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid solved1 x (ccong {f} {g} (record {peq = f=g}) d) with solved1 f d ... | record { peq = f=e } = record { peq = λ q → cc q } where cc : ( q : Fin 3 ) → x ⟨$⟩ʳ q ≡ q cc q = begin x ⟨$⟩ʳ q ≡⟨ sym (f=g q) ⟩ f ⟨$⟩ʳ q ≡⟨ f=e q ⟩ q ∎ solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) }