Mercurial > hg > Members > kono > Proof > galois
view src/sym4.agda @ 274:691b2ee844ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Jan 2023 01:16:38 +0900 |
parents | 6d1619d9f880 |
children | 77f01da94c4e |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym4 where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym4solvable : solvable (Symmetric 4) solvable.dervied-length sym4solvable = 3 solvable.end sym4solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 4) -- Klien -- -- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3) -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] , a0 = pid {4} a1 = pswap (pswap (pid {0})) a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2}) k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ [] open import FLutil open import Data.List.Fresh hiding ([_]) open import Relation.Nary using (⌊_⌋) p0id : FL→perm ((# 0) :: (# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl open import Data.List.Fresh.Relation.Unary.Any open import FLComm stage3FList : CommFListN 4 3 ≡ cons (zero :: zero :: zero :: zero :: f0) [] (Level.lift tt) stage3FList = refl st3 = proj₁ (toList ( CommFListN 4 2 )) -- st4 = {!!} solved1 : (x : Permutation 4 4) → deriving 3 x → x =p= pid solved1 x dr = CommSolved 4 x ( CommFListN 4 3 ) stage3FList p0id solved2 where -- p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid solved2 : Any (perm→FL x ≡_) ( CommFListN 4 3 ) solved2 = CommStage→ 4 3 x dr