Mercurial > hg > Members > kono > Proof > galois
view src/sym2n.agda @ 255:6d1619d9f880
library
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jan 2021 10:18:08 +0900 |
parents | sym2n.agda@59d12d02dfa8 |
children | 77f01da94c4e |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym2n where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym2solvable : solvable (Symmetric 2) solvable.dervied-length sym2solvable = 1 solvable.end sym2solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 2) open import FLutil open import Data.List.Fresh hiding ([_]) open import Relation.Nary using (⌊_⌋) p0id : FL→perm ((# 0) :: ((# 0) :: f0)) =p= pid p0id = pleq _ _ refl open import Data.List.Fresh.Relation.Unary.Any open import FLComm stage2FList : CommFListN 2 1 ≡ cons (zero :: zero :: f0) [] (Level.lift tt) stage2FList = refl solved1 : (x : Permutation 2 2) → deriving 1 x → x =p= pid solved1 x dr = CommSolved 2 x ( CommFListN 2 1 ) stage2FList p0id solved0 where solved0 : Any (perm→FL x ≡_) ( CommFListN 2 1 ) solved0 = CommStage→ 2 1 x dr