Mercurial > hg > Members > kono > Proof > galois
view src/sym5a.agda @ 255:6d1619d9f880
library
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jan 2021 10:18:08 +0900 |
parents | sym5a.agda@d782dd481a26 |
children | f59a9f4cfd78 |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym5a where open import Symmetric open import Data.Unit using (⊤ ; tt ) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function hiding (flip) open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin hiding (_<_ ; _≤_ ; lift ) open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ open import Data.List hiding ( [_] ) open import nat open import fin open import logic open _∧_ ¬sym5solvable : ¬ ( solvable (Symmetric 5) ) ¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (any3de (dervied-length sol) 3rot 0<3 0<4 ) ) where -- -- dba 1320 d → b → a → d -- (dba)⁻¹ 3021 a → b → d → a -- aec 21430 -- (aec)⁻¹ 41032 -- [ dba , aec ] = (abd)(cea)(dba)(aec) = abc -- so commutator always contains abc, dba and aec open ≡-Reasoning open solvable open Solvable ( Symmetric 5) end5 : (x : Permutation 5 5) → deriving (dervied-length sol) x → x =p= pid end5 x der = end sol x der 0<4 : 0 < 4 0<4 = s≤s z≤n 0<3 : 0 < 3 0<3 = s≤s z≤n --- 1 ∷ 2 ∷ 0 ∷ [] abc 3rot : Permutation 3 3 3rot = pid {3} ∘ₚ pins (n≤ 2) save2 : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 save2 i<3 j<4 = flip (pins (s≤s i<3)) ∘ₚ flip (pins j<4) -- Permutation 5 5 include any Permutation 3 3 any3 : {i j : ℕ } → Permutation 3 3 → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 any3 abc i<3 j<4 = (save2 i<3 j<4 ∘ₚ (pprep (pprep abc))) ∘ₚ flip (save2 i<3 j<4 ) any3cong : {i j : ℕ } → {x y : Permutation 3 3 } → {i<3 : i ≤ 3 } → {j<4 : j ≤ 4 } → x =p= y → any3 x i<3 j<4 =p= any3 y i<3 j<4 any3cong {i} {j} {x} {y} {i<3} {j<4} x=y = presp {5} {save2 i<3 j<4 ∘ₚ (pprep (pprep x))} {_} {flip (save2 i<3 j<4 )} (presp {5} {save2 i<3 j<4} prefl (pprep-cong (pprep-cong x=y)) ) prefl open _=p=_ -- derving n includes any Permutation 3 3, any3de : {i j : ℕ } → (n : ℕ) → (abc : Permutation 3 3) → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → deriving n (any3 abc i<3 j<4) any3de {i} {j} zero abc i<3 j<4 = Level.lift tt any3de {i} {j} (suc n) abc i<3 j<4 = ccong abc-from-comm (comm (any3de n (abc ∘ₚ abc) i<3 j0<4 ) (any3de n (abc ∘ₚ abc) i0<3 j<4 )) where i0 : ℕ i0 = ? j0 : ℕ j0 = ? i0<3 : i0 ≤ 3 i0<3 = {!!} j0<4 : j0 ≤ 4 j0<4 = {!!} abc-from-comm : [ any3 (abc ∘ₚ abc) i<3 j0<4 , any3 (abc ∘ₚ abc) i0<3 j<4 ] =p= any3 abc i<3 j<4 abc-from-comm = {!!} abc : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 abc i<3 j<4 = any3 3rot i<3 j<4 counter-example : ¬ (abc 0<3 0<4 =p= pid ) counter-example eq with ←pleq _ _ eq ... | ()