Mercurial > hg > Members > kono > Proof > galois
view PermGroup.agda @ 3:6e77fefcbe41
Permutation Group
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 Aug 2020 16:03:23 +0900 |
parents | PermAbel.agda@1b73893387c0 |
children | 121213cfc85a |
line wrap: on
line source
module PermAbel where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin open import Data.Product open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality f1 : Fin 3 → Fin 3 f1 zero = suc (suc zero) f1 (suc zero) = zero f1 (suc (suc zero)) = suc zero lemma1 : Permutation 3 3 lemma1 = permutation f1 ( f1 ∘ f1 ) lemma2 where lemma3 : (x : Fin 3 ) → f1 (f1 (f1 x)) ≡ x lemma3 zero = refl lemma3 (suc zero) = refl lemma3 (suc (suc zero)) = refl lemma2 : :→-to-Π (λ x → f1 (f1 x)) InverseOf :→-to-Π f1 lemma2 = record { left-inverse-of = λ x → lemma3 x ; right-inverse-of = λ x → lemma3 x } fid : {p : ℕ } → Fin p → Fin p fid x = x -- Data.Fin.Permutation.id pid : {p : ℕ } → Permutation p p pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } -- Data.Fin.Permutation.flip pinv : {p : ℕ } → Permutation p p → Permutation p p pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where field peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q open _=p=_ prefl : {p : ℕ } { x : Permutation p p } → x =p= x peq (prefl {p} {x}) q = refl psym : {p : ℕ } { x y : Permutation p p } → x =p= y → y =p= x peq (psym {p} {x} {y} eq ) q = sym (peq eq q) ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y → y =p= z → x =p= z peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q) pgroup : ℕ → Group Level.zero Level.zero pgroup p = record { Carrier = Permutation p p ; _≈_ = _=p=_ ; _∙_ = _∘ₚ_ ; ε = pid ; _⁻¹ = pinv ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym } ; ∙-cong = presp } ; assoc = passoc } ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } )) } ; inverse = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} )) ; ⁻¹-cong = λ i=j → record { peq = λ q → p-inv i=j q } } } where presp : {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v) presp {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q) lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) passoc : (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z)) passoc x y z = record { peq = λ q → refl } p-inv : {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q p-inv {i} {j} i=j q = begin i ⟨$⟩ˡ q ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j) ) ⟩ i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (peq i=j _ )) ⟩ i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ inverseˡ i ⟩ j ⟨$⟩ˡ q ∎ where open ≡-Reasoning