view PermGroup.agda @ 3:6e77fefcbe41

Permutation Group
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 16 Aug 2020 16:03:23 +0900
parents PermAbel.agda@1b73893387c0
children 121213cfc85a
line wrap: on
line source

module PermAbel where

open import Level hiding ( suc ; zero )
open import Algebra
open import Algebra.Structures
open import Data.Fin
open import Data.Product
open import Data.Fin.Permutation
open import Function hiding (id ; flip)
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function.LeftInverse  using ( _LeftInverseOf_ )
open import Function.Equality using (Π)
open import Data.Nat using (ℕ; suc; zero)
open import Relation.Binary.PropositionalEquality

f1 : Fin 3 → Fin 3
f1 zero = suc (suc zero)
f1 (suc zero) = zero
f1 (suc (suc zero)) = suc zero

lemma1  : Permutation 3 3
lemma1  = permutation f1 ( f1 ∘ f1 ) lemma2 where
   lemma3 : (x : Fin 3 ) → f1 (f1 (f1 x)) ≡ x
   lemma3 zero = refl
   lemma3 (suc zero) = refl
   lemma3 (suc (suc zero)) = refl
   lemma2 : :→-to-Π (λ x → f1 (f1 x)) InverseOf :→-to-Π f1
   lemma2 = record { left-inverse-of = λ x → lemma3 x ; right-inverse-of = λ x → lemma3 x }

fid : {p : ℕ } → Fin p → Fin p
fid x = x

-- Data.Fin.Permutation.id
pid : {p : ℕ } → Permutation p p
pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl }

-- Data.Fin.Permutation.flip
pinv : {p : ℕ } → Permutation p p → Permutation p p
pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P }

record _=p=_ {p : ℕ } ( x y : Permutation p p )  : Set where
    field
       peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q

open _=p=_

prefl : {p : ℕ } { x  : Permutation p p } → x =p= x
peq (prefl {p} {x}) q = refl

psym : {p : ℕ } { x y : Permutation p p } → x =p= y →  y =p= x
peq (psym {p} {x} {y}  eq ) q = sym (peq eq q)

ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y  → y =p= z →  x =p= z
peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q)

pgroup : ℕ → Group  Level.zero Level.zero
pgroup p = record {
      Carrier        = Permutation p p
    ; _≈_            = _=p=_
    ; _∙_            = _∘ₚ_
    ; ε              = pid
    ; _⁻¹            = pinv
    ; isGroup = record { isMonoid  = record { isSemigroup = record { isMagma = record {
       isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym }
       ; ∙-cong = presp }
       ; assoc = passoc }
       ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } ))  }
       ; inverse   = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} ))  
       ; ⁻¹-cong   = λ i=j → record { peq = λ q → p-inv i=j q }
      }
   } where
       presp : {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v)
       presp {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where
           lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q)
           lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ )
       passoc : (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p=  (x ∘ₚ (y ∘ₚ z))
       passoc x y z = record { peq = λ q → refl }
       p-inv : {i j : Permutation p p} →  i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q
       p-inv {i} {j} i=j q = begin
              i ⟨$⟩ˡ q
           ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j)  )  ⟩
              i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q ))
           ≡⟨ cong (λ k  →  i ⟨$⟩ˡ k) (sym (peq i=j _ ))  ⟩
              i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q ))
           ≡⟨ inverseˡ i  ⟩
              j ⟨$⟩ˡ q
           ∎ where open ≡-Reasoning