Mercurial > hg > Members > kono > Proof > galois
view Symmetric.agda @ 39:7b890eb577a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Aug 2020 09:44:08 +0900 |
parents | bc289ffd0896 |
children | e87ed47742b1 |
line wrap: on
line source
module Symmetric where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) open import Data.Fin.Properties hiding ( <-cmp ; <-trans ; ≤-trans ) open import Data.Product open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ) open import nat fid : {p : ℕ } → Fin p → Fin p fid x = x -- Data.Fin.Permutation.id pid : {p : ℕ } → Permutation p p pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } -- Data.Fin.Permutation.flip pinv : {p : ℕ } → Permutation p p → Permutation p p pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where field peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q open _=p=_ prefl : {p : ℕ } { x : Permutation p p } → x =p= x peq (prefl {p} {x}) q = refl psym : {p : ℕ } { x y : Permutation p p } → x =p= y → y =p= x peq (psym {p} {x} {y} eq ) q = sym (peq eq q) ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y → y =p= z → x =p= z peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q) Symmetric : ℕ → Group Level.zero Level.zero Symmetric p = record { Carrier = Permutation p p ; _≈_ = _=p=_ ; _∙_ = _∘ₚ_ ; ε = pid ; _⁻¹ = pinv ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym } ; ∙-cong = presp } ; assoc = passoc } ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } )) } ; inverse = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} )) ; ⁻¹-cong = λ i=j → record { peq = λ q → p-inv i=j q } } } where presp : {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v) presp {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q) lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) passoc : (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z)) passoc x y z = record { peq = λ q → refl } p-inv : {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q p-inv {i} {j} i=j q = begin i ⟨$⟩ˡ q ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j) ) ⟩ i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (peq i=j _ )) ⟩ i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ inverseˡ i ⟩ j ⟨$⟩ˡ q ∎ where open ≡-Reasoning open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import fin -- An inductive construction of permutation pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc n) → Fin (suc n) p→ zero = zero p→ (suc x) = suc ( perm ⟨$⟩ˡ x) p← : Fin (suc n) → Fin (suc n) p← zero = zero p← (suc x) = suc ( perm ⟨$⟩ʳ x) piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc x) = cong (λ k → suc k ) (inverseˡ perm) piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc x) = cong (λ k → suc k ) (inverseʳ perm) pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc (suc n)) → Fin (suc (suc n)) p→ zero = suc zero p→ (suc zero) = zero p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) ) p← : Fin (suc (suc n)) → Fin (suc (suc n)) p← zero = suc zero p← (suc zero) = zero p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) ) piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc zero) = refl piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc zero) = refl piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) -- enumeration psawpn : {n m : ℕ} → suc m < n → Permutation n n psawpn {suc zero} {m} (s≤s ()) psawpn {suc n} {m} (s≤s (s≤s x)) = pswap pid pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n pfill1 0 _ perm = perm pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) ) eperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) eperm {zero} () eperm {n} {0} (s≤s z≤n) perm = pprep perm eperm {n} {suc m} (s≤s m<n) perm = eperm1 m 2 lemm3 (pswap {0} pid ) (pprep perm) where lemm3 : 2 + m ≤ suc n lemm3 = ≤-trans (s≤s m<n) refl-≤s eperm1 : (m i : ℕ ) → i + m ≤ suc n → Permutation i i → Permutation (suc n)(suc n)→ Permutation (suc n)(suc n) eperm1 zero i i<ssm sw perm = perm ∘ₚ ( pfill (subst (λ k → k ≤ suc n) (+-comm i _) i<ssm) sw ) -- i + zero ≤ suc (suc n) → i ≤ suc (suc n) eperm1 (suc m) i i<ssm sw perm = eperm1 m (suc i) (lemm4 i<ssm ) (pprep sw) perm where lemm4 : i + suc m ≤ suc n → suc i + m ≤ suc n lemm4 lt = begin suc i + m ≡⟨ cong (λ k → suc k ) ( +-comm i _ ) ⟩ suc m + i ≡⟨ +-comm (suc m) _ ⟩ i + suc m ≤⟨ lt ⟩ suc n ∎ where open ≤-Reasoning finpid : (n i : ℕ ) → i < n → List (Fin n) finpid (suc n) zero _ = fromℕ≤ {zero} (s≤s z≤n) ∷ [] finpid (suc n) (suc i) (s≤s lt) = fromℕ≤ (s≤s lt) ∷ finpid (suc n) i (<-trans lt a<sa) fpid : (n : ℕ ) → List (Fin n) fpid 0 = [] fpid (suc j) = finpid (suc j) j a<sa where plist : {n : ℕ} → Permutation n n → List ℕ plist {0} perm = [] plist {suc j} perm = plist1 j a<sa where n = suc j plist1 : (i : ℕ ) → i < n → List ℕ plist1 zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ [] plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) test = eperm {3} ( s≤s ( s≤s z≤n )) ( eperm (s≤s z≤n) pid ) NL : (n : ℕ ) → Set NL 0 = ℕ NL (suc n) = List ( NL n ) pls : (n : ℕ ) → List (List ℕ ) pls n = pls1 n n lem0 where lem0 : {n : ℕ } → n ≤ n lem0 {zero} = z≤n lem0 {suc n} = s≤s lem0 lem1 : {i n : ℕ } → i ≤ n → i < suc n lem1 z≤n = s≤s z≤n lem1 (s≤s lt) = s≤s (lem1 lt) lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) pls3 : ( i n : ℕ ) → (i<n : i < n ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls3 i n i<n [] x = x pls3 i n i<n (h ∷ t) x = pls3 i n i<n t ( eperm {n} {i} i<n h ∷ x ) pls2 : ( i n : ℕ ) → (i<n : i ≤ n ) → List (Permutation (suc n) (suc n)) pls2 0 n i≤<n = pid ∷ [] pls2 (suc i) (suc n) (s≤s i≤n) = pls3 i (suc n) (lem1 i≤n) ( pls2 i n i≤n) [] pls1 : ( i n : ℕ ) → i ≤ n → List (List ℕ) pls1 0 n _ = [] pls1 (suc i) n (s≤s i≤n) = (Data.List.map plist ( pls2 i n (lem2 i≤n)) ) ++ pls1 i n (lem2 i≤n)