Mercurial > hg > Members > kono > Proof > galois
view FLutil.agda @ 155:88585eeb917c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Sep 2020 09:25:45 +0900 |
parents | 61bfb2c5e03d |
children | 05fdfd07cabc |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module FLutil where open import Level hiding ( suc ; zero ) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions open import logic open import nat infixr 100 _::_ data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) data _f<_ : {n : ℕ } (x : FL n ) (y : FL n) → Set where f<n : {m : ℕ } {xn yn : Fin (suc m) } {xt yt : FL m} → xn Data.Fin.< yn → (xn :: xt) f< ( yn :: yt ) f<t : {m : ℕ } {xn : Fin (suc m) } {xt yt : FL m} → xt f< yt → (xn :: xt) f< ( xn :: yt ) FLeq : {n : ℕ } {xn yn : Fin (suc n)} {x : FL n } {y : FL n} → xn :: x ≡ yn :: y → ( xn ≡ yn ) × (x ≡ y ) FLeq refl = refl , refl f-<> : {n : ℕ } {x : FL n } {y : FL n} → x f< y → y f< x → ⊥ f-<> (f<n x) (f<n x₁) = nat-<> x x₁ f-<> (f<n x) (f<t lt2) = nat-≡< refl x f-<> (f<t lt) (f<n x) = nat-≡< refl x f-<> (f<t lt) (f<t lt2) = f-<> lt lt2 f-≡< : {n : ℕ } {x : FL n } {y : FL n} → x ≡ y → y f< x → ⊥ f-≡< refl (f<n x) = nat-≡< refl x f-≡< refl (f<t lt) = f-≡< refl lt FLcmp : {n : ℕ } → Trichotomous {Level.zero} {FL n} _≡_ _f<_ FLcmp f0 f0 = tri≈ (λ ()) refl (λ ()) FLcmp (xn :: xt) (yn :: yt) with <-fcmp xn yn ... | tri< a ¬b ¬c = tri< (f<n a) (λ eq → nat-≡< (cong toℕ (proj₁ (FLeq eq)) ) a) (λ lt → f-<> lt (f<n a) ) ... | tri> ¬a ¬b c = tri> (λ lt → f-<> lt (f<n c) ) (λ eq → nat-≡< (cong toℕ (sym (proj₁ (FLeq eq)) )) c) (f<n c) ... | tri≈ ¬a refl ¬c with FLcmp xt yt ... | tri< a ¬b ¬c₁ = tri< (f<t a) (λ eq → ¬b (proj₂ (FLeq eq) )) (λ lt → f-<> lt (f<t a) ) ... | tri≈ ¬a₁ refl ¬c₁ = tri≈ (λ lt → f-≡< refl lt ) refl (λ lt → f-≡< refl lt ) ... | tri> ¬a₁ ¬b c = tri> (λ lt → f-<> lt (f<t c) ) (λ eq → ¬b (proj₂ (FLeq eq) )) (f<t c) f<-trans : {n : ℕ } { x y z : FL n } → x f< y → y f< z → x f< z f<-trans {suc n} (f<n x) (f<n x₁) = f<n ( Data.Fin.Properties.<-trans x x₁ ) f<-trans {suc n} (f<n x) (f<t y<z) = f<n x f<-trans {suc n} (f<t x<y) (f<n x) = f<n x f<-trans {suc n} (f<t x<y) (f<t y<z) = f<t (f<-trans x<y y<z) infixr 250 _f<?_ _f<?_ : {n : ℕ} → (x y : FL n ) → Dec (x f< y ) x f<? y with FLcmp x y ... | tri< a ¬b ¬c = yes a ... | tri≈ ¬a refl ¬c = no ( ¬a ) ... | tri> ¬a ¬b c = no ( ¬a ) _f≤_ : {n : ℕ } (x : FL n ) (y : FL n) → Set _f≤_ x y = (x ≡ y ) ∨ (x f< y ) FL0 : {n : ℕ } → FL n FL0 {zero} = f0 FL0 {suc n} = zero :: FL0 fmax : { n : ℕ } → FL n fmax {zero} = f0 fmax {suc n} = fromℕ< a<sa :: fmax {n} fmax< : { n : ℕ } → {x : FL n } → ¬ (fmax f< x ) fmax< {suc n} {x :: y} (f<n lt) = nat-≤> (fmax1 x) lt where fmax1 : {n : ℕ } → (x : Fin (suc n)) → toℕ x ≤ toℕ (fromℕ< {n} a<sa) fmax1 {zero} zero = z≤n fmax1 {suc n} zero = z≤n fmax1 {suc n} (suc x) = s≤s (fmax1 x) fmax< {suc n} {x :: y} (f<t lt) = fmax< {n} {y} lt fmax¬ : { n : ℕ } → {x : FL n } → ¬ ( x ≡ fmax ) → x f< fmax fmax¬ {zero} {f0} ne = ⊥-elim ( ne refl ) fmax¬ {suc n} {x} ne with FLcmp x fmax ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( ne b) ... | tri> ¬a ¬b c = ⊥-elim (fmax< c) FL0≤ : {n : ℕ } → FL0 {n} f≤ fmax FL0≤ {zero} = case1 refl FL0≤ {suc zero} = case1 refl FL0≤ {suc n} with <-fcmp zero (fromℕ< {n} a<sa) ... | tri< a ¬b ¬c = case2 (f<n a) ... | tri≈ ¬a b ¬c with FL0≤ {n} ... | case1 x = case1 (subst₂ (λ j k → (zero :: FL0) ≡ (j :: k ) ) b x refl ) ... | case2 x = case2 (subst (λ k → (zero :: FL0) f< (k :: fmax)) b (f<t x) ) open import Data.Nat.Properties using ( ≤-trans ; <-trans ) fsuc : { n : ℕ } → (x : FL n ) → x f< fmax → FL n fsuc {n} (x :: y) (f<n lt) = fromℕ< fsuc1 :: y where fsuc2 : toℕ x < toℕ (fromℕ< a<sa) fsuc2 = lt fsuc1 : suc (toℕ x) < n fsuc1 = Data.Nat.Properties.≤-trans (s≤s lt) ( s≤s ( toℕ≤pred[n] (fromℕ< a<sa)) ) fsuc (x :: y) (f<t lt) = x :: fsuc y lt flist1 : {n : ℕ } (i : ℕ) → i < suc n → List (FL n) → List (FL n) → List (FL (suc n)) flist1 zero i<n [] _ = [] flist1 zero i<n (a ∷ x ) z = ( zero :: a ) ∷ flist1 zero i<n x z flist1 (suc i) (s≤s i<n) [] z = flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z flist1 (suc i) i<n (a ∷ x ) z = ((fromℕ< i<n ) :: a ) ∷ flist1 (suc i) i<n x z flist : {n : ℕ } → FL n → List (FL n) flist {zero} f0 = f0 ∷ [] flist {suc n} (x :: y) = flist1 n a<sa (flist y) (flist y) fr22 : fsuc (zero :: zero :: f0) (fmax¬ (λ ())) ≡ (suc zero :: zero :: f0) fr22 = refl fr4 : List (FL 4) fr4 = Data.List.reverse (flist (fmax {4}) ) -- fr5 : List (List ℕ) -- fr5 = map plist (map FL→perm (Data.List.reverse (flist (fmax {4}) ))) open import Relation.Binary as B hiding (Decidable; _⇔_) open import Data.Sum.Base as Sum -- inj₁ open import Relation.Nary using (⌊_⌋) open import Data.List.Fresh FList : (n : ℕ ) → Set FList n = List# (FL n) ⌊ _f<?_ ⌋ fr1 : FList 3 fr1 = ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 0) :: ((# 1) :: ((# 0 ) :: f0))) ∷# ((# 1) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 0) :: ((# 0 ) :: f0))) ∷# ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) ∷# [] open import Data.Product open import Relation.Nullary.Decidable hiding (⌊_⌋) open import Data.Bool hiding (_<_) open import Data.Unit.Base using (⊤ ; tt) -- fresh a [] = ⊤ -- fresh a (x ∷# xs) = R a x × fresh a xs -- toWitness -- ttf< : {n : ℕ } → {x a : FL n } → x f< a → T (isYes (x f<? a)) -- ttf< {n} {x} {a} x<a with x f<? a -- ... | yes y = subst (λ k → Data.Bool.T k ) refl tt -- ... | no nn = ⊥-elim ( nn x<a ) ttf : {n : ℕ } {x a : FL (suc n)} → x f< a → (y : FList (suc n)) → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ x y ttf _ [] fr = Level.lift tt ttf {_} {x} {a} lt (cons a₁ y x1) (lift lt1 , x2 ) = (Level.lift (fromWitness (ttf1 lt1 lt ))) , ttf (ttf1 lt1 lt) y x1 where ttf1 : True (a f<? a₁) → x f< a → x f< a₁ ttf1 t x<a = f<-trans x<a (toWitness t) -- by https://gist.github.com/aristidb/1684202 FLinsert : {n : ℕ } → FL n → FList n → FList n FLfresh : {n : ℕ } → (a x : FL (suc n) ) → (y : FList (suc n) ) → a f< x → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ a (FLinsert x y) FLinsert {zero} f0 y = f0 ∷# [] FLinsert {suc n} x [] = x ∷# [] FLinsert {suc n} x (cons a y x₁) with FLcmp x a ... | tri≈ ¬a b ¬c = cons a y x₁ ... | tri< lt ¬b ¬c = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf lt y x₁) FLinsert {suc n} x (cons a [] x₁) | tri> ¬a ¬b lt = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) FLinsert {suc n} x (cons a y yr) | tri> ¬a ¬b a<x = cons a (FLinsert x y) (FLfresh a x y a<x yr ) FLfresh a x [] a<x (Level.lift tt) = Level.lift (fromWitness a<x) , Level.lift tt FLfresh a x (cons b [] (Level.lift tt)) a<x (Level.lift a<b , a<y) with FLcmp x b ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , Level.lift tt ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , Level.lift tt ... | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt FLfresh a x (cons b y br) a<x (Level.lift a<b , a<y) with FLcmp x b ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , ttf (toWitness a<b) y br ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , ttf a<x y br FLfresh a x (cons b [] br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt FLfresh a x (cons b (cons a₁ y x₁) br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = Level.lift a<b , FLfresh a x (cons a₁ y x₁) a<x a<y fr6 = FLinsert ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) fr1 -- open import Data.List.Fresh.Relation.Unary.All -- fr7 = append ( ((# 1) :: ((# 1) :: ((# 0 ) :: f0))) ∷# [] ) fr1 ( ({!!} , {!!} ) ∷ [] ) Flist1 : {n : ℕ } (i : ℕ) → i < suc n → FList n → FList n → FList (suc n) Flist1 zero i<n [] _ = [] Flist1 zero i<n (a ∷# x ) z = FLinsert ( zero :: a ) (Flist1 zero i<n x z ) Flist1 (suc i) (s≤s i<n) [] z = Flist1 i (Data.Nat.Properties.<-trans i<n a<sa) z z Flist1 (suc i) i<n (a ∷# x ) z = FLinsert ((fromℕ< i<n ) :: a ) (Flist1 (suc i) i<n x z ) ∀Flist : {n : ℕ } → FL n → FList n ∀Flist {zero} f0 = f0 ∷# [] ∀Flist {suc n} (x :: y) = Flist1 n a<sa (∀Flist y) (∀Flist y) fr8 : FList 4 fr8 = ∀Flist fmax open import Data.List.Fresh.Relation.Unary.Any x∈FLins : {n : ℕ} → (x : FL n ) → (xs : FList n) → Any (x ≡_ ) (FLinsert x xs) x∈FLins {zero} f0 [] = here refl x∈FLins {zero} f0 (cons f0 xs x) = here refl x∈FLins {suc n} x [] = here refl x∈FLins {suc n} x (cons a xs x₁) with FLcmp x a ... | tri< x<a ¬b ¬c = here refl ... | tri≈ ¬a b ¬c = here b x∈FLins {suc n} x (cons a [] x₁) | tri> ¬a ¬b a<x = there ( here refl ) x∈FLins {suc n} x (cons a (cons a₁ xs x₂) x₁) | tri> ¬a ¬b a<x = there ( x∈FLins x (cons a₁ xs x₂) ) open import fin x∈∀Flist : {n : ℕ } → (x : FL n ) → Any (x ≡_ ) (∀Flist fmax) x∈∀Flist {n} x = AFlist1 n x where AFList0 : (n : ℕ ) → Any (_≡_ (fromℕ< a<sa :: fmax)) (Flist1 n a<sa (∀Flist fmax) (∀Flist fmax)) AFList0 = {!!} AFList2 : (n : ℕ ) (x : FL (suc n)) → (x1 : Fin (suc n)) (y : FL n) → x f< ( x1 :: y) → Any (_≡_ x) (Flist1 n a<sa (∀Flist y) (∀Flist y)) AFList2 = {!!} AFlist1 : (n : ℕ ) → (x : FL n) → Any (_≡_ x) (∀Flist fmax) AFlist1 zero f0 = here refl AFlist1 (suc n) x with FLcmp x fmax ... | tri< a ¬b ¬c = AFList2 n x (fromℕ< a<sa) (fmax {n}) (fmax¬ ¬b) ... | tri≈ ¬a refl ¬c = AFList0 n ... | tri> ¬a ¬b c = ⊥-elim ( fmax< c ) -- FLinsert membership module FLMB { n : ℕ } where FL-Setoid : Setoid Level.zero Level.zero FL-Setoid = record { Carrier = FL n ; _≈_ = _≡_ ; isEquivalence = record { sym = sym ; refl = refl ; trans = trans }} open import Data.List.Fresh.Membership.Setoid FL-Setoid FLinsert-mb : (x : FL n ) → (xs : FList n) → x ∈ FLinsert x xs FLinsert-mb x xs = x∈FLins {n} x xs