view FLComm.agda @ 188:9e0d946d35b6

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 28 Nov 2020 21:50:16 +0900
parents c22ef5bc695a
children d0b678eec506
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
module FLComm (n : ℕ) where

open import Level renaming ( suc to Suc ; zero to Zero ) hiding (lift)
open import Data.Fin hiding ( _<_  ; _≤_ ; _-_ ; _+_ ; _≟_)
open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp )
open import Data.Fin.Permutation  
open import Data.Nat.Properties 
open import Relation.Binary.PropositionalEquality hiding ( [_] ) renaming ( sym to ≡-sym )
open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev )
open import Data.Product hiding (_,_ )
open import Relation.Nullary 
open import Data.Unit
open import Data.Empty
open import  Relation.Binary.Core 
open import  Relation.Binary.Definitions hiding (Symmetric )
open import logic
open import nat

open import FLutil
open import Putil
import Solvable 
open import Symmetric

-- infixr  100 _::_

open import Relation.Nary using (⌊_⌋)
open import Data.List.Fresh hiding ([_])
open import Data.List.Fresh.Relation.Unary.Any

open Solvable (Symmetric n) 

tl3 : (FL n) → ( z : FList n) → FList n → FList n
tl3 h [] w = w
tl3 h (x ∷# z) w = tl3 h z (FLinsert ( perm→FL [ FL→perm h , FL→perm x ] ) w )
tl2 : ( x z : FList n) → FList n →  FList n
tl2 [] _ x = x
tl2 (h ∷# x) z w = tl2 x z (tl3 h z w)

CommFList  :  FList n →  FList n
CommFList x =  tl2 x x [] 

CommFListN  : ℕ  →  FList n
CommFListN  0 = ∀Flist fmax
CommFListN  (suc i) = CommFList (CommFListN i)

open import Algebra 
open Group (Symmetric n)

CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i )
CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x)
CommStage→ (suc i) .( [ g , h ] ) (comm {g} {h} p q) = comm2 (CommFListN i) (CommFListN i) (CommStage→ i g p) (CommStage→ i h q) [] where
   G = perm→FL g
   H = perm→FL h
   comm3 : (L L1 : FList n) → (xr : fresh (FL n) ⌊ _f<?_ ⌋ G L ) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 (cons G L xr) L1 L3)
   comm3 [] L1 _ b L3 = {!!}
   comm3 (cons a L x) L1 _ b L3 = {!!}
   comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ]  ≡_) (tl2 L L1 L3)
   comm2 (cons G L xr) L1 (here refl) b L3 = comm3 L L1 xr b L3
   comm2 (cons x L xr) L1 (there a) b L3 = comm2 L L1 a b {!!}
CommStage→ (suc i) x (ccong {f} {x} eq p) = subst (λ k → Any (k ≡_) (tl2 (CommFListN i) (CommFListN i) [])) (comm4 eq) (CommStage→ (suc i) f p ) where
   comm4 : f =p= x →  perm→FL f ≡ perm→FL x
   comm4 = pcong-pF

CommSolved : (x : Permutation n n) → (y : FList n) → y ≡ FL0 ∷# [] → (FL→perm (FL0 {n}) =p= pid ) → Any (perm→FL x ≡_) y → x =p= pid
CommSolved x .(cons FL0 [] (Level.lift tt)) refl eq0 (here eq) = FLpid _ eq eq0