view src/Fundamental.agda @ 282:b70cc2534d2f

double record on quontient group
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 29 Jan 2023 10:47:09 +0900
parents 803f909fdd17
children b89af4300407
line wrap: on
line source

-- fundamental homomorphism theorem
--

open import Level hiding ( suc ; zero )
module Fundamental (c : Level) where

open import Algebra
open import Algebra.Structures
open import Algebra.Definitions
open import Algebra.Core
open import Algebra.Bundles

open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Gutil0
import Gutil
import Function.Definitions as FunctionDefinitions

import Algebra.Morphism.Definitions as MorphismDefinitions
open import Algebra.Morphism.Structures

open import Tactic.MonoidSolver using (solve; solve-macro)

--
-- Given two groups G and H and a group homomorphism f : G → H,
-- let K be a normal subgroup in G and φ the natural surjective homomorphism G → G/K
-- (where G/K is the quotient group of G by K).
-- If K is a subset of ker(f) then there exists a unique homomorphism h: G/K → H such that f = h∘φ.
--     https://en.wikipedia.org/wiki/Fundamental_theorem_on_homomorphisms
--
--       f
--    G --→ H
--    |   /
--  φ |  / h
--    ↓ /
--    G/K
--

import Relation.Binary.Reasoning.Setoid as EqReasoning

_<_∙_> :  (m : Group c c )  →    Group.Carrier m →  Group.Carrier m →  Group.Carrier m
m < x ∙ y > =  Group._∙_ m x y

_<_≈_> :  (m : Group c c )  →    (f  g : Group.Carrier m ) → Set c
m < x ≈ y > =  Group._≈_ m x y

infixr 9 _<_∙_>

--
--  Coset : N : NormalSubGroup →  { a ∙ n | G ∋ a , N ∋ n }
--

open GroupMorphisms

import Axiom.Extensionality.Propositional
postulate f-extensionality : { n m : Level}  → Axiom.Extensionality.Propositional.Extensionality n m
open import Tactic.MonoidSolver using (solve; solve-macro)


record NormalSubGroup (A : Group c c )  : Set c  where
   open Group A
   field
       ⟦_⟧ : Group.Carrier A → Group.Carrier A
       normal :  IsGroupHomomorphism (GR A) (GR A)  ⟦_⟧
       comm : {a b :  Carrier } → b ∙ ⟦ a ⟧  ≈ ⟦ a ⟧  ∙ b
       --
       factor : (a b : Carrier) → Carrier
       is-factor : (a b : Carrier) →  b ∙ ⟦ factor a b ⟧ ≈ a

-- Set of a ∙ ∃ n ∈ N
--
record an {A : Group c c }  (N : NormalSubGroup A ) (n x : Group.Carrier A  ) : Set c where
    open Group A
    open NormalSubGroup N
    field
        a : Group.Carrier A
        aN=x :  a ∙ ⟦ n ⟧ ≈ x

record aN {A : Group c c }  (N : NormalSubGroup A )  : Set c where
    field
        n : Group.Carrier A
        is-an : (x : Group.Carrier A) → an N n x

qid : {A : Group c c }  (N : NormalSubGroup A )  → aN N
qid {A} N = record { n = ε ; is-an = λ x → record { a = x ; aN=x = ? } } where
       open Group A
       open NormalSubGroup N

_/_ : (A : Group c c ) (N  : NormalSubGroup A ) → Group c c
_/_ A N  = record {
    Carrier  = aN N
    ; _≈_      = λ f g → ⟦ n f ⟧ ≈ ⟦ n g ⟧
    ; _∙_      = qadd
    ; ε        = qid N
    ; _⁻¹      = ?
    ; isGroup = record { isMonoid  = record { isSemigroup = record { isMagma = record {
       isEquivalence = record {refl = grefl ; trans = gtrans ; sym = gsym }
       ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → ? }
       ; assoc = ? }
       ; identity =  ? , (λ q → ? )  }
       ; inverse   = ( (λ x → ? ) , (λ x → ? ))
       ; ⁻¹-cong   = λ i=j → ?
      }
   } where
       open Group A
       open aN
       open an
       open NormalSubGroup N
       open IsGroupHomomorphism normal
       open EqReasoning (Algebra.Group.setoid A)
       open Gutil A
       qadd : (f g : aN N) → aN N
       qadd f g = record { n = n f ∙ n g  ; is-an = λ x → record { a = x ⁻¹ ∙ ( a (is-an f x) ∙ a (is-an g x))  ; aN=x = qadd0 }  } where
           qadd0 : {x : Carrier} →   x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x)) ∙ ⟦ n f ∙ n g ⟧ ≈ x
           qadd0 {x} = begin
              x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x)) ∙ ⟦ n f ∙ n g ⟧ ≈⟨ ? ⟩
              x ⁻¹ ∙  (a (is-an f x) ∙ a (is-an g x) ∙ ⟦ n f ∙ n g ⟧) ≈⟨ ? ⟩
              x ⁻¹ ∙  (a (is-an f x) ∙ a (is-an g x) ∙ ( ⟦ n f ⟧  ∙ ⟦ n g ⟧ )) ≈⟨ ? ⟩
              x ⁻¹ ∙  (a (is-an f x) ∙ ( a (is-an g x) ∙  ⟦ n f ⟧)  ∙ ⟦ n g ⟧)  ≈⟨ ? ⟩
              x ⁻¹ ∙  (a (is-an f x) ∙ ( ⟦ n f ⟧ ∙ a (is-an g x) )  ∙ ⟦ n g ⟧)  ≈⟨ ? ⟩
              x ⁻¹ ∙  ((a (is-an f x) ∙ ⟦ n f ⟧ ) ∙ ( a (is-an g x)   ∙ ⟦ n g ⟧))  ≈⟨ ? ⟩
              x ⁻¹ ∙  ((a (is-an f x) ∙ ⟦ n f ⟧ ) ∙ ( a (is-an g x)   ∙ ⟦ n g ⟧))  ≈⟨ ? ⟩
              x ⁻¹ ∙  (x ∙ x)  ≈⟨ ? ⟩
             x ∎

-- K ⊂ ker(f)
K⊆ker : (G H : Group c c)  (K : NormalSubGroup G) (f : Group.Carrier G → Group.Carrier H ) → Set c
K⊆ker G H K f = (x : Group.Carrier G ) → f ( ⟦ x ⟧ ) ≈ ε   where
  open Group H
  open NormalSubGroup K

open import Function.Surjection
open import Function.Equality

module _ (G : Group c c) (K : NormalSubGroup G) where
    open Group G
    open aN
    open an
    open NormalSubGroup K
    open IsGroupHomomorphism normal
    open EqReasoning (Algebra.Group.setoid G)
    open Gutil G

    φ : Group.Carrier G → Group.Carrier (G / K )
    φ g = record { n = factor ε g ; is-an = λ x → record { a = x ∙ ( ⟦ factor ε g ⟧ ⁻¹)   ; aN=x = ?  } }

    φ-homo : IsGroupHomomorphism (GR G) (GR (G / K)) φ
    φ-homo = record {⁻¹-homo = λ g → ?  ; isMonoidHomomorphism = record { ε-homo = ? ; isMagmaHomomorphism = record { homo = ? ; isRelHomomorphism =
       record { cong = ? } }}}

    φe : (Algebra.Group.setoid G)  Function.Equality.⟶ (Algebra.Group.setoid (G / K))
    φe = record { _⟨$⟩_ = φ ; cong = ?  }  where
           φ-cong : {f g : Carrier } → f ≈ g  → ⟦ n (φ f ) ⟧ ≈ ⟦ n (φ g ) ⟧
           φ-cong = ?

    -- inverse ofφ
    --  f = λ x → record { a = af ; n = fn ; aN=x = x ≈ af ∙ ⟦ fn ⟧  )   = (af)K  , fn ≡ factor x af , af ≡ a (f x)
    --        (inv-φ f)K ≡ (af)K
    --           φ (inv-φ f) x → f (h0 x)
    --           f x → φ (inv-φ f) (h1 x)

    inv-φ : Group.Carrier (G / K ) → Group.Carrier G
    inv-φ f = ⟦ n f ⟧ ⁻¹


    cong-i : {f g : Group.Carrier (G / K ) } → ⟦ n f ⟧ ≈ ⟦ n g ⟧ → inv-φ f ≈ inv-φ g
    cong-i = ?

    is-inverse : (f : aN K  ) →  ⟦ n (φ (inv-φ f) ) ⟧ ≈ ⟦ n f ⟧
    is-inverse f = begin
       ⟦ n (φ (inv-φ f) ) ⟧  ≈⟨ grefl  ⟩
       ⟦ n (φ (⟦ n f  ⟧ ⁻¹) ) ⟧  ≈⟨ grefl  ⟩
       ⟦ factor ε (⟦ n f  ⟧ ⁻¹) ⟧  ≈⟨ ? ⟩
       ( ⟦ n f ⟧ ∙ ⟦ n f  ⟧ ⁻¹) ∙  ⟦ factor ε (⟦ n f  ⟧ ⁻¹) ⟧  ≈⟨ ? ⟩
       ⟦ n f ⟧ ∙ ( ⟦ n f  ⟧ ⁻¹ ∙  ⟦ factor ε (⟦ n f  ⟧ ⁻¹) ⟧ ) ≈⟨ ∙-cong grefl (is-factor ε _ ) ⟩
       ⟦ n f ⟧ ∙ ε  ≈⟨ ? ⟩
       ⟦ n f ⟧ ∎

    φ-surjective : Surjective φe
    φ-surjective = record { from = record { _⟨$⟩_ = inv-φ ; cong = λ {f} {g} → cong-i {f} {g} }  ; right-inverse-of = is-inverse }

record FundamentalHomomorphism (G H : Group c c )
    (f : Group.Carrier G → Group.Carrier H )
    (homo : IsGroupHomomorphism (GR G) (GR H) f )
    (K : NormalSubGroup G ) (kf : K⊆ker G H K f) :  Set c where
  open Group H
  field
    h : Group.Carrier (G / K ) → Group.Carrier H
    h-homo :  IsGroupHomomorphism (GR (G / K) ) (GR H) h
    is-solution : (x : Group.Carrier G)  →  f x ≈ h ( φ G K x )
    unique : (h1 : Group.Carrier (G / K ) → Group.Carrier H)  →
       ( (x : Group.Carrier G)  →  f x ≈ h1 ( φ G K x ) ) → ( ( x : Group.Carrier (G / K)) → h x ≈ h1 x )

FundamentalHomomorphismTheorm : (G H : Group c c)
    (f : Group.Carrier G → Group.Carrier H )
    (homo : IsGroupHomomorphism (GR G) (GR H) f )
    (K : NormalSubGroup G ) → (kf : K⊆ker G H K f)   → FundamentalHomomorphism G H f homo K kf
FundamentalHomomorphismTheorm G H f homo K kf = record {
     h = h
   ; h-homo = h-homo
   ; is-solution = is-solution
   ; unique = unique
  } where
    open Group H
    h : Group.Carrier (G / K ) → Group.Carrier H
    h r = f ( aN.n ? )
    h03 : (x y : Group.Carrier (G / K ) ) →  h ( (G / K) < x ∙ y > ) ≈ h x ∙ h y
    h03 x y = {!!}
    h-homo :  IsGroupHomomorphism (GR (G / K ) ) (GR H) h
    h-homo = record {
     isMonoidHomomorphism = record {
          isMagmaHomomorphism = record {
             isRelHomomorphism = record { cong = λ {x} {y} eq → {!!} }
           ; homo = h03 }
        ; ε-homo = {!!} }
       ; ⁻¹-homo = {!!} }
    is-solution : (x : Group.Carrier G)  →  f x ≈ h ( φ G K x )
    is-solution x = begin
         f x ≈⟨ ? ⟩
         ? ≈⟨ ? ⟩
         f ( aN.n (( φ G K  ) (Group.ε G )  )) ≈⟨ ?  ⟩
         h ( φ G K x ) ∎ where open EqReasoning (Algebra.Group.setoid H )
    unique : (h1 : Group.Carrier (G / K ) → Group.Carrier H)  →
       ( (x : Group.Carrier G)  →  f x ≈ h1 ( φ G K x ) ) → ( ( x : Group.Carrier (G / K)) → h x ≈ h1 x )
    unique = ?