Mercurial > hg > Members > kono > Proof > galois
view sym4.agda @ 130:bd924ac0e37d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Sep 2020 08:38:06 +0900 |
parents | 43d00372bdc9 |
children | d880595eae30 |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym4 where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym4solvable : solvable (Symmetric 4) solvable.dervied-length sym4solvable = 3 solvable.end sym4solvable x d = solved1 x {!!} where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 4) -- open Group (Symmetric 2) using (_⁻¹) open _=p=_ -- Klien -- -- 1 (1,2),(3,4) (1,3),(2,4) (1,4),(2,3) -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] , 1 ∷ 0 ∷ 3 ∷ 2 ∷ [] , 2 ∷ 3 ∷ 0 ∷ 1 ∷ [] , 3 ∷ 2 ∷ 1 ∷ 0 ∷ [] , data Klein : (x : Permutation 4 4 ) → Set where kid : Klein pid ka : Klein (pswap (pswap pid)) kb : Klein (pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) ) kc : Klein (pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2})) a0 = pid {4} a1 = pswap (pswap (pid {0})) a2 = pid {4} ∘ₚ pins (n≤ 3) ∘ₚ pins (n≤ 3 ) a3 = pins (n≤ 3) ∘ₚ pins (n≤ 2) ∘ₚ pswap (pid {2}) -- 1 0 -- 2 1 0 -- 3 2 1 0 k1 : { x : Permutation 4 4 } → Klein x → List ℕ k1 {x} kid = plist x k1 {x} ka = plist x k1 {x} kb = plist x k1 {x} kc = plist x k2 = k1 kid ∷ k1 ka ∷ k1 kb ∷ k1 kc ∷ [] k3 = plist (a1 ∘ₚ a2 ) ∷ plist (a1 ∘ₚ a3) ∷ plist (a2 ∘ₚ a1 ) ∷ [] p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl -- stage 1 (A4) p0 = (zero :: zero :: zero :: zero :: f0 ) p1 = (zero :: suc zero :: suc zero :: zero :: f0 ) p2 = (zero :: suc (suc zero) :: zero :: zero :: f0 ) p3 = (suc zero :: zero :: suc zero :: zero :: f0 ) p4 = (suc zero :: suc zero :: zero :: zero :: f0 ) p5 = (suc zero :: suc (suc zero) :: suc zero :: zero :: f0 ) p6 = (suc (suc zero) :: zero :: zero :: zero :: f0 ) p7 = (suc (suc zero) :: suc zero :: suc zero :: zero :: f0 ) p8 = (suc (suc zero) :: suc (suc zero) :: zero :: zero :: f0 ) p9 = (suc (suc (suc zero)) :: zero :: suc zero :: zero :: f0 ) pa = (suc (suc (suc zero)) :: suc zero :: zero :: zero :: f0 ) pb = (suc (suc (suc zero)) :: suc (suc zero) :: suc zero :: zero :: f0 ) t0 = plist (FL→perm p0 ) ∷ plist (FL→perm p1 ) ∷ plist (FL→perm p2 ) ∷ plist (FL→perm p3 ) ∷ plist (FL→perm p4 ) ∷ plist (FL→perm p5 ) ∷ plist (FL→perm p6 ) ∷ plist (FL→perm p7 ) ∷ plist (FL→perm p8 ) ∷ plist (FL→perm p9 ) ∷ plist (FL→perm pa ) ∷ plist (FL→perm pb ) ∷ [] t1 : List (FL 4) → List (FL 4) t1 x = tl2 x x [] where tl3 : (FL 4) → ( z : List (FL 4)) → List (FL 4) → List (FL 4) tl3 h [] w = w tl3 h (x ∷ z) w = tl3 h z (( perm→FL [ FL→perm h , FL→perm x ] ) ∷ w ) tl2 : ( x z : List (FL 4)) → List (FL 4) → List (FL 4) tl2 [] _ x = x tl2 (h ∷ x) z w = tl2 x z (tl3 h z w) stage1 : List (FL 4) stage1 = t1 ( ∀-FL 3 ) -- stage2 ( Kline ) -- k0 p0 zero :: zero :: zero :: zero :: f0 ∷ (0 ∷ 1 ∷ 2 ∷ 3 ∷ []) ∷ -- k1 p3 suc zero :: zero :: suc zero :: zero :: f0 ∷ (1 ∷ 0 ∷ 3 ∷ 2 ∷ []) ∷ -- k2 p8 suc (suc zero) :: suc (suc zero) :: zero :: zero :: f0 ∷ (2 ∷ 3 ∷ 0 ∷ 1 ∷ []) -- k3 pb suc (suc (suc zero)) :: suc (suc zero) :: suc zero :: zero :: f0 ∷ (3 ∷ 2 ∷ 1 ∷ 0 ∷ []) tb = plist ( FL→perm p0) ∷ plist ( FL→perm p3) ∷ plist ( FL→perm p8) ∷ plist ( FL→perm pb) ∷ [] stage2 : List (FL 4) stage2 = t1 ( p0 ∷ p1 ∷ p2 ∷ p3 ∷ p4 ∷ p5 ∷ p6 ∷ p7 ∷ p8 ∷ p9 ∷ pa ∷ pb ∷ [] ) solved1 : (x : Permutation 4 4) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid solved1 = {!!}