Mercurial > hg > Members > kono > Proof > galois
view Solvable.agda @ 68:c184003e517d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 18:55:37 +0900 |
parents | b45ebc91a8d1 |
children | 32004c9a70b1 |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module Solvable {n m : Level} (G : Group n m ) where open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open Group G open import Gutil G [_,_] : Carrier → Carrier → Carrier [ g , h ] = g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h data Commutator (P : Carrier → Set (Level.suc n ⊔ m)) : (f : Carrier) → Set (Level.suc n ⊔ m) where uni : Commutator P ε comm : {g h : Carrier} → P g → P h → Commutator P [ g , h ] gen : {f g : Carrier} → Commutator P f → Commutator P g → Commutator P ( f ∙ g ) ccong : {f g : Carrier} → f ≈ g → Commutator P f → Commutator P g deriving : ( i : ℕ ) → Carrier → Set (Level.suc n ⊔ m) deriving 0 x = Lift (Level.suc n ⊔ m) ⊤ deriving (suc i) x = Commutator (deriving i) x record solvable : Set (Level.suc n ⊔ m) where field dervied-length : ℕ end : (x : Carrier ) → deriving dervied-length x → x ≈ ε -- deriving stage is closed on multiplication and inversion import Relation.Binary.Reasoning.Setoid as EqReasoning lemma4 : (g h : Carrier ) → [ h , g ] ≈ [ g , h ] ⁻¹ lemma4 g h = begin [ h , g ] ≈⟨ grefl ⟩ (h ⁻¹ ∙ g ⁻¹ ∙ h ) ∙ g ≈⟨ assoc _ _ _ ⟩ h ⁻¹ ∙ g ⁻¹ ∙ (h ∙ g) ≈⟨ ∙-cong grefl (gsym (∙-cong lemma6 lemma6)) ⟩ h ⁻¹ ∙ g ⁻¹ ∙ ((h ⁻¹) ⁻¹ ∙ (g ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 _ _ ) ⟩ h ⁻¹ ∙ g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹ ≈⟨ assoc _ _ _ ⟩ h ⁻¹ ∙ (g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 (g ⁻¹ ∙ h ⁻¹ ) g ) ⟩ h ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹ ∙ g) ⁻¹ ≈⟨ lemma5 (g ⁻¹ ∙ h ⁻¹ ∙ g) h ⟩ (g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h) ⁻¹ ≈⟨ grefl ⟩ [ g , h ] ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G) deriving-mul : { i : ℕ } → { x y : Carrier } → deriving i x → deriving i y → deriving i ( x ∙ y ) deriving-mul {zero} {x} {y} _ _ = lift tt deriving-mul {suc i} {x} {y} ix iy = gen ix iy deriving-inv : { i : ℕ } → { x : Carrier } → deriving i x → deriving i ( x ⁻¹ ) deriving-inv {zero} {x} (lift tt) = lift tt deriving-inv {suc i} {ε} uni = ccong lemma3 uni deriving-inv {suc i} {_} (comm x x₁ ) = ccong (lemma4 _ _) (comm x₁ x) where deriving-inv {suc i} {_} (gen x x₁ ) = ccong (lemma5 _ _ ) ( gen (deriving-inv x₁) (deriving-inv x)) where deriving-inv {suc i} {x} (ccong eq ix ) = ccong (⁻¹-cong eq) ( deriving-inv ix )