Mercurial > hg > Members > kono > Proof > galois
view Gutil.agda @ 87:c68956f6c3ad
tc fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Aug 2020 11:44:58 +0900 |
parents | bf12f26bacc3 |
children |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module Gutil {n m : Level} (G : Group n m ) where open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open Group G import Relation.Binary.Reasoning.Setoid as EqReasoning gsym = Algebra.Group.sym G grefl = Algebra.Group.refl G gtrans = Algebra.Group.trans G lemma3 : ε ≈ ε ⁻¹ lemma3 = begin ε ≈⟨ gsym (proj₁ inverse _) ⟩ ε ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ ε ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G) lemma6 : {f : Carrier } → ( f ⁻¹ ) ⁻¹ ≈ f lemma6 {f} = begin ( f ⁻¹ ) ⁻¹ ≈⟨ gsym ( proj₁ identity _) ⟩ ε ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ ∙-cong (gsym ( proj₂ inverse _ )) grefl ⟩ (f ∙ f ⁻¹ ) ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ assoc _ _ _ ⟩ f ∙ ( f ⁻¹ ∙ ( f ⁻¹ ) ⁻¹ ) ≈⟨ ∙-cong grefl (proj₂ inverse _) ⟩ f ∙ ε ≈⟨ proj₂ identity _ ⟩ f ∎ where open EqReasoning (Algebra.Group.setoid G) ≡→≈ : {f g : Carrier } → f ≡ g → f ≈ g ≡→≈ refl = grefl --- -- to avoid assoc storm, flatten multiplication according to the template -- data MP : Carrier → Set (Level.suc n) where am : (x : Carrier ) → MP x _o_ : {x y : Carrier } → MP x → MP y → MP ( x ∙ y ) mpf : {x : Carrier } → (m : MP x ) → Carrier → Carrier mpf (am x) y = x ∙ y mpf (m o m₁) y = mpf m ( mpf m₁ y ) mp-flatten : {x : Carrier } → (m : MP x ) → Carrier mp-flatten m = mpf m ε mpl1 : Carrier → {x : Carrier } → MP x → Carrier mpl1 x (am y) = x ∙ y mpl1 x (y o y1) = mpl1 ( mpl1 x y ) y1 mpl : {x z : Carrier } → MP x → MP z → Carrier mpl (am x) m = mpl1 x m mpl (m o m1) m2 = mpl m (m1 o m2) mp-flattenl : {x : Carrier } → (m : MP x ) → Carrier mp-flattenl m = mpl m (am ε) test1 : ( f g : Carrier ) → Carrier test1 f g = mp-flattenl ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) test2 : ( f g : Carrier ) → test1 f g ≡ g ⁻¹ ∙ f ⁻¹ ∙ f ∙ g ∙ (f ∙ g) ⁻¹ ∙ ε test2 f g = _≡_.refl test3 : ( f g : Carrier ) → Carrier test3 f g = mp-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) test4 : ( f g : Carrier ) → test3 f g ≡ g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))) test4 f g = _≡_.refl ∙-flatten : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten m ∙-flatten {x} (am x) = gsym (proj₂ identity _) ∙-flatten {_} (am x o q) = ∙-cong grefl ( ∙-flatten q ) ∙-flatten (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ ( ∙-flatten {x ∙ y } (p o q )) ( ∙-flatten {z} r ) where mp-cong : {p q r : Carrier} → (P : MP p) → q ≈ r → mpf P q ≈ mpf P r mp-cong (am x) q=r = ∙-cong grefl q=r mp-cong (P o P₁) q=r = mp-cong P ( mp-cong P₁ q=r ) mp-assoc : {p q r : Carrier} → (P : MP p) → mpf P q ∙ r ≈ mpf P (q ∙ r ) mp-assoc (am x) = assoc _ _ _ mp-assoc {p} {q} {r} (P o P₁) = begin mpf P (mpf P₁ q) ∙ r ≈⟨ mp-assoc P ⟩ mpf P (mpf P₁ q ∙ r) ≈⟨ mp-cong P (mp-assoc P₁) ⟩ mpf P ((mpf P₁) (q ∙ r)) ∎ where open EqReasoning (Algebra.Group.setoid G) lemma9 : (x y z : Carrier) → x ∙ y ≈ mpf p (mpf q ε) → z ≈ mpf r ε → x ∙ y ∙ z ≈ mp-flatten ((p o q) o r) lemma9 x y z t s = begin x ∙ y ∙ z ≈⟨ ∙-cong t grefl ⟩ mpf p (mpf q ε) ∙ z ≈⟨ mp-assoc p ⟩ mpf p (mpf q ε ∙ z) ≈⟨ mp-cong p (mp-assoc q ) ⟩ mpf p (mpf q (ε ∙ z)) ≈⟨ mp-cong p (mp-cong q (proj₁ identity _ )) ⟩ mpf p (mpf q z) ≈⟨ mp-cong p (mp-cong q s) ⟩ mpf p (mpf q (mpf r ε)) ∎ where open EqReasoning (Algebra.Group.setoid G) grepl : { x y0 y1 z : Carrier } → x ∙ y0 ≈ y1 → x ∙ ( y0 ∙ z ) ≈ y1 ∙ z grepl eq = gtrans (gsym (assoc _ _ _ )) (∙-cong eq grefl ) grm : { x y0 y1 z : Carrier } → x ∙ y0 ≈ ε → x ∙ ( y0 ∙ z ) ≈ z grm eq = gtrans ( gtrans (gsym (assoc _ _ _ )) (∙-cong eq grefl )) ( proj₁ identity _ ) -- ∙-flattenl : {x : Carrier } → (m : MP x ) → x ≈ mp-flattenl m -- ∙-flattenl (am x) = gsym (proj₂ identity _) -- ∙-flattenl (q o am x) with ∙-flattenl q -- x₁ ∙ x ≈ mpl q (am x o am ε) , t : x₁ ≈ mpl q (am ε) -- ... | t = {!!} -- ∙-flattenl (q o (x o y )) with ∙-flattenl q -- ... | t = gtrans (gsym (assoc _ _ _ )) {!!} lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ lemma5 f g = begin g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩ g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩ g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ ∙-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) ⟩ g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))) ≈⟨ ∙-cong grefl (gsym (assoc _ _ _ )) ⟩ g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩ g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ gsym (assoc _ _ _) ⟩ (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ (f ∙ g) ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ (f ∙ g) ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G)