Mercurial > hg > Members > kono > Proof > galois
view src/Gutil0.agda @ 272:ce372f6347d6
Foundamental definition done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 19:15:38 +0900 |
parents | c209aebeab2a |
children | 386ece574509 |
line wrap: on
line source
open import Level hiding ( suc ; zero ) module Gutil0 where open import Algebra open import Algebra.Structures open import Algebra.Definitions open import Data.Product open import Relation.Binary.PropositionalEquality open import Algebra.Morphism.Structures open import Data.Empty open import Relation.Nullary open GroupMorphisms GR : {c l : Level } → Group c l → RawGroup c l GR G = record { Carrier = Carrier G ; _≈_ = _≈_ G ; _∙_ = _∙_ G ; ε = ε G ; _⁻¹ = _⁻¹ G } where open Group record GAxiom {c l : Level } (G : Group c l) : Set ( c Level.⊔ l ) where open Group G field ∙-cong : {x y u v : Carrier } → x ≈ y → u ≈ v → x ∙ u ≈ y ∙ v assoc : (x y z : Carrier ) → x ∙ y ∙ z ≈ x ∙ ( y ∙ z ) identity : ((y : Carrier) → ε ∙ y ≈ y ) × ((y : Carrier) → y ∙ ε ≈ y ) inverse : ((y : Carrier) → y ⁻¹ ∙ y ≈ ε ) × ((y : Carrier) → y ∙ y ⁻¹ ≈ ε ) ⁻¹-cong : {x y : Carrier } → x ≈ y → x ⁻¹ ≈ y ⁻¹ GA : {c l : Level } → (G : Group c l) → GAxiom G GA G = record { ∙-cong = IsMagma.∙-cong ( IsSemigroup.isMagma ( IsMonoid.isSemigroup ( IsGroup.isMonoid isGroup))) ; assoc = IsSemigroup.assoc ( IsMonoid.isSemigroup ( IsGroup.isMonoid isGroup)) ; identity = IsMonoid.identity ( IsGroup.isMonoid isGroup) ; inverse = IsGroup.inverse isGroup ; ⁻¹-cong = IsGroup.⁻¹-cong isGroup } where open Group G open import Relation.Binary.Structures Eq : {c l : Level } → (G : Group c l) → IsEquivalence _ Eq G = IsMagma.isEquivalence (IsSemigroup.isMagma (IsMonoid.isSemigroup (IsGroup.isMonoid (Group.isGroup G ))) ) grefl : {c l : Level } → (G : Group c l ) → {x : Group.Carrier G} → Group._≈_ G x x grefl G = IsGroup.refl ( Group.isGroup G ) gsym : {c l : Level } → (G : Group c l ) → {x y : Group.Carrier G} → Group._≈_ G x y → Group._≈_ G y x gsym G = IsGroup.sym ( Group.isGroup G ) gtrans : {c l : Level } → (G : Group c l ) → {x y z : Group.Carrier G} → Group._≈_ G x y → Group._≈_ G y z → Group._≈_ G x z gtrans G = IsGroup.trans ( Group.isGroup G ) -- record NormalSubGroup {c l : Level } ( G : Group c l ) : Set ( c Level.⊔ l ) where -- open Group G -- field -- sub : Carrier → Carrier -- s-homo : IsGroupHomomorphism (GR G) (GR G) sub -- commute : ( g n : Carrier ) → g ∙ sub n ≈ sub n ∙ g -- -- it has at least one element other than ε -- -- anElement : Carrier -- -- notE : ¬ ( Group._≈_ G anElement (Group.ε G) ) -- open import Relation.Binary.Morphism.Structures import Relation.Binary.Reasoning.Setoid as EqReasoning -- record HomoMorphism {c l : Level } (G : Group c l) (f : Group.Carrier G → Group.Carrier G) : Set ( c Level.⊔ l ) where -- open Group G -- field -- f-cong : {x y : Carrier } → x ≈ y → f x ≈ f y -- f-homo : (x y : Carrier ) → f ( x ∙ y ) ≈ f x ∙ f y -- f-ε : f ( ε ) ≈ ε -- f-inv : (x : Carrier) → f ( x ⁻¹ ) ≈ (f x ) ⁻¹ -- HM : {c l : Level } → (G : Group c l ) → (f : Group.Carrier G → Group.Carrier G ) -- → IsGroupHomomorphism (GR G) (GR G) f → HomoMorphism G f -- HM G f homo = record { -- f-cong = λ eq → IsRelHomomorphism.cong ( IsMagmaHomomorphism.isRelHomomorphism -- ( IsMonoidHomomorphism.isMagmaHomomorphism ( IsGroupHomomorphism.isMonoidHomomorphism homo))) eq -- ; f-homo = IsMagmaHomomorphism.homo (IsMonoidHomomorphism.isMagmaHomomorphism ( IsGroupHomomorphism.isMonoidHomomorphism homo)) -- ; f-ε = IsMonoidHomomorphism.ε-homo ( IsGroupHomomorphism.isMonoidHomomorphism homo) -- ; f-inv = IsGroupHomomorphism.⁻¹-homo homo -- } -- -- open HomoMorphism -- -- hm : {c l : Level } → (G : Group c l ) → (f : Group.Carrier G → Group.Carrier G ) -- → HomoMorphism G f -- → IsGroupHomomorphism (GR G) (GR G) f -- hm G f hm = record { isMonoidHomomorphism = record { isMagmaHomomorphism = record { -- isRelHomomorphism = record { cong = λ {x} {y} eq → f-cong hm {x} {y} eq } -- ; homo = f-homo hm } ; ε-homo = f-ε hm } ; ⁻¹-homo = f-inv hm -- } --