Mercurial > hg > Members > kono > Proof > galois
view Putil.agda @ 50:ddec1ef4f5e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Aug 2020 13:39:14 +0900 |
parents | 8b3b95362ca9 |
children | 3e677c24a6cc |
line wrap: on
line source
module Putil where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ) renaming (reverse to rev ) open import nat open import Symmetric open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import fin -- An inductive construction of permutation -- we already have refl and trans in the Symmetric Group pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc n) → Fin (suc n) p→ zero = zero p→ (suc x) = suc ( perm ⟨$⟩ˡ x) p← : Fin (suc n) → Fin (suc n) p← zero = zero p← (suc x) = suc ( perm ⟨$⟩ʳ x) piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc x) = cong (λ k → suc k ) (inverseˡ perm) piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc x) = cong (λ k → suc k ) (inverseʳ perm) pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc (suc n)) → Fin (suc (suc n)) p→ zero = suc zero p→ (suc zero) = zero p→ (suc (suc x)) = suc ( suc ( perm ⟨$⟩ˡ x) ) p← : Fin (suc (suc n)) → Fin (suc (suc n)) p← zero = suc zero p← (suc zero) = zero p← (suc (suc x)) = suc ( suc ( perm ⟨$⟩ʳ x) ) piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x piso← zero = refl piso← (suc zero) = refl piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x piso→ zero = refl piso→ (suc zero) = refl piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) -- enumeration psawpn : {n : ℕ} → 1 < n → Permutation n n psawpn {suc zero} (s≤s ()) psawpn {suc n} (s≤s (s≤s x)) = pswap pid pfill : { n m : ℕ } → m ≤ n → Permutation m m → Permutation n n pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where pfill1 : (i : ℕ ) → i ≤ n → Permutation (n - i) (n - i) → Permutation n n pfill1 0 _ perm = perm pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) ) -- -- psawpim (inseert swap at position m ) -- not easy to write directory beacause left-inverse-of may contains Fin relations -- psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) ) n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j n≤ (zero) {j} = z≤n n≤ (suc i) {j} = s≤s ( n≤ i ) lem0 : {n : ℕ } → n ≤ n lem0 {zero} = z≤n lem0 {suc n} = s≤s lem0 lem00 : {n m : ℕ } → n ≡ m → n ≤ m lem00 refl = lem0 -- pconcat : {n m : ℕ } → Permutation m m → Permutation n n → Permutation (m + n) (m + n) -- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ? -- inductivley enmumerate permutations -- from n-1 length create n length inserting new element at position m -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) ) -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ [] -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ [] pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) pins {_} {zero} _ = pid pins {suc _} {suc zero} _ = pswap pid pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) pins1 _ zero _ = pid pins1 zero _ _ = pid pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n refl-≤s ) plist : {n : ℕ} → Permutation n n → List ℕ plist {0} perm = [] plist {suc j} perm = rev (plist1 j a<sa) where n = suc j plist1 : (i : ℕ ) → i < n → List ℕ plist1 zero _ = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ [] plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n) open import logic shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (# 0) ≡ # 0 → Permutation n n shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where shlem→ : (x : Fin (suc n) ) → perm ⟨$⟩ˡ x ≡ zero → x ≡ zero shlem→ x px=0 = begin x ≡⟨ sym ( inverseʳ perm ) ⟩ perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ x) ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) px=0 ⟩ perm ⟨$⟩ʳ zero ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) (sym p0=0) ⟩ perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero) ≡⟨ inverseʳ perm ⟩ zero ∎ where open ≡-Reasoning shlem← : (x : Fin (suc n)) → perm ⟨$⟩ʳ x ≡ zero → x ≡ zero shlem← x px=0 = begin x ≡⟨ sym (inverseˡ perm ) ⟩ perm ⟨$⟩ˡ ( perm ⟨$⟩ʳ x ) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) px=0 ⟩ perm ⟨$⟩ˡ zero ≡⟨ p0=0 ⟩ zero ∎ where open ≡-Reasoning sh2 : {x : Fin n} → ¬ perm ⟨$⟩ˡ (suc x) ≡ zero sh2 {x} eq with shlem→ (suc x) eq sh2 {x} eq | () p→ : Fin n → Fin n p→ x = fin-1 ( perm ⟨$⟩ˡ (suc x) ) sh2 ssh4 : (x : Fin n ) → suc (p→ x) ≡ perm ⟨$⟩ˡ (suc x) ssh4 = {!!} sh1 : {x : Fin n} → ¬ perm ⟨$⟩ʳ (suc x) ≡ zero sh1 {x} eq with shlem← (suc x) eq sh1 {x} eq | () p← : Fin n → Fin n p← x = fin-1 ( perm ⟨$⟩ʳ (suc x) ) sh1 -- fin-1-sx piso← : (x : Fin n ) → p→ ( p← x ) ≡ x piso← x = sh3 where sh3 : fin-1 ( perm ⟨$⟩ˡ (suc ( fin-1 ( perm ⟨$⟩ʳ (suc x) ) sh1 ))) sh2 ≡ x sh3 = begin fin-1 ( perm ⟨$⟩ˡ (suc ( fin-1 ( perm ⟨$⟩ʳ (suc x) ) sh1 ))) sh2 ≡⟨ cong (λ k → fin-1 (perm ⟨$⟩ˡ k ) (sh4 k) ) (fin-1-xs _ sh5 ) ⟩ fin-1 ( perm ⟨$⟩ˡ ( perm ⟨$⟩ʳ (suc x) )) sh6 ≡⟨ cong (λ k → fin-1 k {!!} ) (inverseˡ perm) ⟩ fin-1 (suc x) (λ ()) ≡⟨ fin-1-sx x ⟩ x ∎ where open ≡-Reasoning sh4 : (k : Fin (suc n)) → ¬ Inverse.from perm Π.⟨$⟩ k ≡ zero sh4 = {!!} sh5 : ¬ Inverse.to perm Π.⟨$⟩ suc x ≡ zero sh5 = {!!} sh6 : ¬ Inverse.from perm Π.⟨$⟩ (Inverse.to perm Π.⟨$⟩ suc x) ≡ zero sh6 = {!!} piso→ : (x : Fin n ) → p← ( p→ x ) ≡ x piso→ x = sh4 where sh4 : fin-1 ( perm ⟨$⟩ʳ (suc ( fin-1 ( perm ⟨$⟩ˡ (suc x) ) sh2 ))) sh1 ≡ x sh4 = {!!} perm→FL : {n : ℕ } → Permutation n n → FL n perm→FL {zero} perm = f0 perm→FL {suc n} perm = (perm ⟨$⟩ˡ fromℕ≤ a<sa ) :: perm→FL ( shrink fl1 {!!} ) where fl1 : Permutation (suc n) (suc n) fl1 = perm ∘ₚ pinv ( pins {!!}) fl1=pprep : perm =p= pprep ( shrink fl1 {!!} ) fl1=pprep = {!!} FL→perm : {n : ℕ } → FL n → Permutation n n FL→perm f0 = pid FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl FL→iso (x :: fl) = {!!} --with FL→iso fl -- ... | t = {!!} open _=p=_ FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm FL←iso {0} perm = record { peq = λ () } FL←iso {suc n} perm = {!!} where fl0 : {n : ℕ } → (fl : FL n ) → {!!} fl0 = {!!} all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) all-perm n = pls6 n where lem1 : {i n : ℕ } → i ≤ n → i < suc n lem1 z≤n = s≤s z≤n lem1 (s≤s lt) = s≤s (lem1 lt) lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n ∷ x) pls5 : ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls5 n [] x = x pls5 n (h ∷ x) y = pls5 n x (pls4 n n lem0 h y) pls6 : ( n : ℕ ) → List (Permutation (suc n) (suc n)) pls6 zero = pid ∷ [] pls6 (suc n) = pls5 (suc n) (rev (pls6 n) ) [] -- rev to put id first pls : (n : ℕ ) → List (List ℕ ) pls n = Data.List.map plist (all-perm n) where