Mercurial > hg > Members > kono > Proof > galois
view sym3n.agda @ 219:e6d7671d80a4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Dec 2020 11:44:20 +0900 |
parents | 59d12d02dfa8 |
children |
line wrap: on
line source
open import Level hiding ( suc ; zero ) open import Algebra module sym3n where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym3solvable : solvable (Symmetric 3) solvable.dervied-length sym3solvable = 2 solvable.end sym3solvable x d = solved1 x d where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 3) open import FLutil open import Data.List.Fresh hiding ([_]) open import Relation.Nary using (⌊_⌋) p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl open import Data.List.Fresh.Relation.Unary.Any open import FLComm stage3FList : CommFListN 3 2 ≡ cons (zero :: zero :: zero :: f0) [] (Level.lift tt) stage3FList = refl solved1 : (x : Permutation 3 3) → deriving 2 x → x =p= pid solved1 x dr = CommSolved 3 x ( CommFListN 3 2 ) stage3FList p0id solved2 where solved2 : Any (perm→FL x ≡_) ( CommFListN 3 2 ) solved2 = CommStage→ 3 2 x dr