Mercurial > hg > Members > kono > Proof > galois
view FLComm.agda @ 182:eb94265d2a39 fresh-list
Any based proof computation done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Nov 2020 13:13:58 +0900 |
parents | |
children | 59d12d02dfa8 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) module FLComm (n : ℕ) where open import Level renaming ( suc to Suc ; zero to Zero ) hiding (lift) open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ; _≟_) open import Data.Fin.Properties hiding ( <-trans ; ≤-refl ; ≤-trans ; ≤-irrelevant ; _≟_ ) renaming ( <-cmp to <-fcmp ) open import Data.Fin.Permutation open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.List using (List; []; _∷_ ; length ; _++_ ; tail ) renaming (reverse to rev ) open import Data.Product hiding (_,_ ) open import Relation.Nullary open import Data.Unit open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.Definitions hiding (Symmetric ) open import logic open import nat open import FLutil open import Putil import Solvable open import Symmetric -- infixr 100 _::_ open import Data.List.Fresh hiding ([_]) open import Data.List.Fresh.Relation.Unary.Any open Solvable (Symmetric n) CommFList : FList n → FList n CommFList x = tl2 x x [] where tl3 : (FL n) → ( z : FList n) → FList n → FList n tl3 h [] w = w tl3 h (x ∷# z) w = tl3 h z (FLinsert ( perm→FL [ FL→perm h , FL→perm x ] ) w ) tl2 : ( x z : FList n) → FList n → FList n tl2 [] _ x = x tl2 (h ∷# x) z w = tl2 x z (tl3 h z w) CommFListN : ℕ → FList n CommFListN 0 = ∀Flist fmax CommFListN (suc i) = CommFList (CommFListN i) open import Algebra open Group (Symmetric n) CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) CommStage→ (suc i) x uni = {!!} CommStage→ (suc i) x (comm {g} {h} p q) = {!!} CommStage→ (suc i) x (gen {f} {g} p q) = {!!} CommStage→ (suc i) x (ccong {f} {g} eq p) = {!!} CommSolved : (x : Permutation n n) → (y : FList n) → y ≡ FL0 ∷# [] → (perm→FL x ≡ FL0 → x =p= pid ) → Any (perm→FL x ≡_) y → x =p= pid CommSolved x .(cons FL0 [] (Level.lift tt)) refl fl0→pid (here eq) = fl0→pid eq