open import Level hiding ( suc ; zero ) open import Algebra module sym5n where open import Symmetric open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ sym5solvable : ¬ solvable (Symmetric 5) sym5solvable = {!!} where open import Data.List using ( List ; [] ; _∷_ ) open Solvable (Symmetric 5) open import FLutil open import Data.List.Fresh hiding ([_]) open import Relation.Nary using (⌊_⌋) p0id : FL→perm (zero :: zero :: zero :: (zero :: (zero :: f0))) =p= pid p0id = pleq _ _ refl open import Data.List.Fresh.Relation.Unary.Any open import FLComm stage4FList = CommFListN 5 2