# HG changeset patch # User Shinji KONO # Date 1598248227 -32400 # Node ID 3825082ebdbd73e017008a1c3010594a511e346a # Parent 442873eaf80b7d24b02e7fa8bfec307f1c6f09c2 ∀-FL : (n : ℕ ) → List (FL (suc n)) diff -r 442873eaf80b -r 3825082ebdbd Putil.agda --- a/Putil.agda Mon Aug 24 14:40:11 2020 +0900 +++ b/Putil.agda Mon Aug 24 14:50:27 2020 +0900 @@ -285,16 +285,17 @@ lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) -∀-FL : {n : ℕ } → Fin n → List (FL n) -∀-FL x = ∀-FL1 x where - ∀-FL2 : { n : ℕ } → Fin (suc n) → (i : ℕ ) → i ≤ n → List (FL n) → List (FL (suc n)) → List (FL (suc n)) - ∀-FL2 y zero z≤n [] t = t - ∀-FL2 y zero z≤n (x ∷ fls) t = ∀-FL2 y zero z≤n fls (( zero :: x ) ∷ t ) - ∀-FL2 y (suc i) (s≤s lt) [] t = t - ∀-FL2 y (suc i) (s≤s lt) (fl ∷ fls) t = ∀-FL2 y i (lem2 lt) (fl ∷ fls) (( fromℕ≤ (s≤s (s≤s lt)) :: fl ) ∷ t ) - ∀-FL1 : {n : ℕ } → (Fin n) → List (FL n) - ∀-FL1 zero = [] - ∀-FL1 (suc x) = ∀-FL2 (suc x) (toℕ x) (≤-trans refl-≤s fin