# HG changeset patch # User Shinji KONO # Date 1598262937 -32400 # Node ID c184003e517d9fa40bc82ee6a3e07aba7cc2a4a9 # Parent 3825082ebdbd73e017008a1c3010594a511e346a ... diff -r 3825082ebdbd -r c184003e517d Solvable.agda --- a/Solvable.agda Mon Aug 24 14:50:27 2020 +0900 +++ b/Solvable.agda Mon Aug 24 18:55:37 2020 +0900 @@ -28,7 +28,7 @@ deriving 0 x = Lift (Level.suc n ⊔ m) ⊤ deriving (suc i) x = Commutator (deriving i) x -record Solvable : Set (Level.suc n ⊔ m) where +record solvable : Set (Level.suc n ⊔ m) where field dervied-length : ℕ end : (x : Carrier ) → deriving dervied-length x → x ≈ ε diff -r 3825082ebdbd -r c184003e517d sym5.agda --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/sym5.agda Mon Aug 24 18:55:37 2020 +0900 @@ -0,0 +1,89 @@ +open import Level hiding ( suc ; zero ) +open import Algebra +module sym5 where + +open import Symmetric +open import Data.Unit +open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) +open import Function +open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) +open import Relation.Nullary +open import Data.Empty +open import Data.Product + +open import Gutil +open import Putil +open import Solvable using (solvable) +open import Relation.Binary.PropositionalEquality hiding ( [_] ) + +open import Data.Fin +open import Data.Fin.Permutation + +sym4solvable : solvable (Symmetric 2) +solvable.dervied-length sym4solvable = 1 +solvable.end sym4solvable x d = solved x d where + + open Solvable (Symmetric 2) + -- open Group (Symmetric 2) using (_⁻¹) + + s2 : ( g : Permutation 2 2 ) → g =p= pinv g + s2 g = record { peq = λ q → s2lem q } where + s2lem : (q : Fin 2) → (g ⟨$⟩ʳ q) ≡ (pinv g ⟨$⟩ʳ q) + s2lem zero with g ⟨$⟩ʳ zero | inspect (_⟨$⟩ʳ_ g ) zero + s2lem zero | zero | record { eq = e1 } = begin + zero + ≡⟨ sym (inverseˡ g ) ⟩ + g ⟨$⟩ˡ ( g ⟨$⟩ʳ zero ) + ≡⟨ cong ( λ k → g ⟨$⟩ˡ k ) e1 ⟩ + g ⟨$⟩ˡ zero + ≡⟨⟩ + pinv g ⟨$⟩ʳ zero + ∎ where open ≡-Reasoning + s2lem zero | suc zero | record { eq = e2 } = begin + suc zero + ≡⟨ {!!} ⟩ + g ⟨$⟩ʳ zero + ≡⟨ {!!} ⟩ + g ⟨$⟩ˡ (g ⟨$⟩ʳ ( g ⟨$⟩ˡ zero )) + ≡⟨ {!!} ⟩ + g ⟨$⟩ˡ zero + ≡⟨⟩ + pinv g ⟨$⟩ʳ zero + ∎ where open ≡-Reasoning + s2lem (suc zero) = {!!} + + sym2lem0 : ( g h : Permutation 2 2 ) → (q : Fin 2) → ([ g , h ] ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q) + sym2lem0 g h q with perm→FL g | perm→FL h + sym2lem0 g h q | zero :: (zero :: f0) | zero :: (zero :: f0) = {!!} + sym2lem0 g h q | zero :: (zero :: f0) | suc zero :: (zero :: f0) = {!!} + sym2lem0 g h q | suc zero :: (zero :: f0) | zero :: (zero :: f0) = {!!} + sym2lem0 g h q | suc zero :: (zero :: f0) | suc zero :: (zero :: f0) = {!!} + solved : (x : Permutation 2 2) → Commutator (λ x₁ → Lift (Level.suc Level.zero) ⊤) x → x =p= pid + solved x uni = prefl + solved x (comm {g} {h} _ _) = record { peq = sym2lem0 g h } + solved x (gen {f} {g} d d₁) with solved f d | solved g d₁ + ... | record { peq = f=e } | record { peq = g=e } = record { peq = λ q → genlem q } where + genlem : ( q : Fin 2 ) → g ⟨$⟩ʳ ( f ⟨$⟩ʳ q ) ≡ q + genlem q = begin + g ⟨$⟩ʳ ( f ⟨$⟩ʳ q ) + ≡⟨ g=e ( f ⟨$⟩ʳ q ) ⟩ + f ⟨$⟩ʳ q + ≡⟨ f=e q ⟩ + q + ∎ where open ≡-Reasoning + solved x (ccong {f} {g} (record {peq = f=g}) d) with solved f d + ... | record { peq = f=e } = record { peq = λ q → cc q } where + cc : ( q : Fin 2 ) → x ⟨$⟩ʳ q ≡ q + cc q = begin + x ⟨$⟩ʳ q + ≡⟨ sym (f=g q) ⟩ + f ⟨$⟩ʳ q + ≡⟨ f=e q ⟩ + q + ∎ where open ≡-Reasoning + +¬sym5solvable : ¬ ( solvable (Symmetric 5) ) +¬sym5solvable sol = {!!} + + +