# HG changeset patch # User Shinji KONO # Date 1598949933 -32400 # Node ID e435dbe2e7a6dd1b727ce6219be0e364a31d8d95 # Parent 2d0738a38ac963b16b4c368eca12aaf4a9fa08ad ... diff -r 2d0738a38ac9 -r e435dbe2e7a6 Putil.agda --- a/Putil.agda Tue Sep 01 17:21:31 2020 +0900 +++ b/Putil.agda Tue Sep 01 17:45:33 2020 +0900 @@ -586,6 +586,10 @@ t6 = perm→FL t4 +---- +-- if n is fixed, perm→FL ( FL→perm fl ) ≡ fl is refl for each concrete fl +-- so we may prove this easily by co-induction +-- FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl FL→iso {suc n} (x :: fl) = cong₂ ( λ j k → j :: k ) f001 f002 where @@ -634,12 +638,14 @@ FL←iso {0} perm = record { peq = λ () } FL←iso {suc n} perm with perm→FL perm | inspect perm→FL perm ... | x :: fl | record { eq = e } = ptrans (pcong-Fp e ) f004 where - f004 : FL→perm ( x :: fl ) =p= perm + f003 : perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ≡ fl + f003 = {!!} + f004 : FL→perm ( x :: fl ) =p= perm f004 = record { peq = λ q → ( begin (pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ q - ≡⟨ {!!} ⟩ + ≡⟨ cong (λ k → (pprep (FL→perm k) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ q ) (sym f003 ) ⟩ (pprep (FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ))) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ q - ≡⟨ {!!} ⟩ + ≡⟨ peq (presp (pprep-cong (FL←iso _ ) ) prefl ) q ⟩ (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ q ≡⟨ {!!} ⟩ perm ⟨$⟩ʳ q