changeset 106:02f54eab9205

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 01 Sep 2020 18:26:21 +0900
parents e435dbe2e7a6
children 7e63fb16dc64
files Putil.agda
diffstat 1 files changed, 8 insertions(+), 12 deletions(-) [+]
line wrap: on
line diff
--- a/Putil.agda	Tue Sep 01 17:45:33 2020 +0900
+++ b/Putil.agda	Tue Sep 01 18:26:21 2020 +0900
@@ -636,20 +636,16 @@
 
 FL←iso : {n : ℕ }  → (perm : Permutation n n )  → FL→perm ( perm→FL perm  ) =p= perm
 FL←iso {0} perm = record { peq = λ () }
-FL←iso {suc n} perm with  perm→FL perm | inspect  perm→FL perm
-... | x :: fl | record { eq = e } = ptrans (pcong-Fp e ) f004 where
-    f003 : perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ≡ fl
-    f003 = {!!}
-    f004 : FL→perm ( x :: fl ) =p= perm 
-    f004 = record { peq = λ q → ( begin
-        (pprep (FL→perm fl)  ∘ₚ pins ( toℕ≤pred[n] x ))  ⟨$⟩ʳ q
-     ≡⟨ cong (λ k →  (pprep (FL→perm  k)  ∘ₚ pins ( toℕ≤pred[n] x ))  ⟨$⟩ʳ q ) (sym f003 ) ⟩
-        (pprep (FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) )))  ∘ₚ pins ( toℕ≤pred[n] x ))  ⟨$⟩ʳ q
-     ≡⟨ peq (presp (pprep-cong (FL←iso _ ) ) prefl ) q ⟩
-        (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm))   ∘ₚ pins ( toℕ≤pred[n] x ))  ⟨$⟩ʳ q
+FL←iso {suc n} perm = record { peq = λ q → ( begin
+        FL→perm ( perm→FL perm  ) ⟨$⟩ʳ q
+     ≡⟨⟩
+        (pprep (FL→perm (perm→FL f001))  ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) ) ⟨$⟩ʳ q
+     ≡⟨  peq (presp {suc n} {pprep (FL→perm (perm→FL f001))} {_} {pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) } (pprep-cong (FL←iso _)) record { peq = λ q → refl } ) q  ⟩
+         (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ))  ⟨$⟩ʳ q 
      ≡⟨ {!!}  ⟩
         perm ⟨$⟩ʳ q
-     ∎  ) }
+     ∎  ) }  where
+        f001 = shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)
 
 lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n
 lem2 i≤n = ≤-trans i≤n ( a≤sa )