Mercurial > hg > Members > kono > Proof > galois
changeset 31:039e8511da2a
fperm connected
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 16:18:32 +0900 |
parents | a9fa68dfbd26 |
children | 5b299203acf0 |
files | Symmetric.agda |
diffstat | 1 files changed, 23 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Wed Aug 19 16:08:32 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 16:18:32 2020 +0900 @@ -105,8 +105,20 @@ lem8 {x} = toℕ-fromℕ≤ (<-trans (s≤s m<n ) a<sa ) piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x piso← x with <-cmp (toℕ x) m - piso← x | tri< a ¬b ¬c = {!!} - piso← x | tri> ¬a ¬b c = {!!} + piso← x | tri< a ¬b ¬c = begin + p← ( fin+1 (perm ⟨$⟩ʳ (fromℕ≤ x<sn)) ) + ≡⟨ {!!} ⟩ + x + ∎ where + open ≡-Reasoning + x<sn : toℕ x < suc n + x<sn = <-trans a (s≤s m<n) + piso← x | tri> ¬a ¬b c = begin + p← ( fin+1 (perm ⟨$⟩ʳ (fromℕ≤ (pred<n {_} {x} 0<s )))) + ≡⟨ {!!} ⟩ + x + ∎ where + open ≡-Reasoning piso← x | tri≈ ¬a refl ¬c = begin p← ( fromℕ≤ a<sa ) ≡⟨ lem4 refl ⟩ @@ -124,8 +136,15 @@ piso→ x = lemma2 (suc n) refl x where lemma2 : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x lemma2 i refl x with <-cmp (toℕ x) i - lemma2 i refl x | tri< a ¬b ¬c = {!!} - lemma2 i refl x | tri> ¬a ¬b c = {!!} + lemma2 i refl x | tri< a ¬b ¬c = begin + p→ ( fin+1 (perm ⟨$⟩ˡ (fromℕ≤ x<sn))) + ≡⟨ {!!} ⟩ + x + ∎ where + open ≡-Reasoning + x<sn : toℕ x < suc n + x<sn = a + lemma2 i refl x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) lemma2 i refl x | tri≈ ¬a b ¬c = begin p→ (fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa )) ≡⟨ lem5 (fromℕ≤ {m} {suc (suc n)} (<-trans (s≤s m<n ) a<sa )) {!!} ⟩