Mercurial > hg > Members > kono > Proof > galois
changeset 191:03d40f6e98b1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Nov 2020 02:57:57 +0900 |
parents | 2056fc69974c |
children | a670644d5624 |
files | FLComm.agda FLutil.agda |
diffstat | 2 files changed, 11 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sun Nov 29 00:28:19 2020 +0900 +++ b/FLComm.agda Sun Nov 29 02:57:57 2020 +0900 @@ -58,9 +58,7 @@ comm3 : (L1 : FList n) → Any (H ≡_) L1 → (L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 L3) comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) - comm3 (H ∷# cons a L1 x) (here refl) L3 = comm3 (cons a L1 x) {!!} {!!} where - L3' : FList n - L3' = tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + comm3 (cons H (cons a L1 x) x₁) (here refl) L3 = {!!} comm3 (cons a L _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where @@ -68,7 +66,6 @@ comm8 : (L5 L4 L3 : FList n) → (a : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L5 (tl3 (perm→FL g) L1 L3))) comm8 [] L4 L3 a = comm7 L4 L3 comm8 (cons a₁ L5 x) L4 L3 a = {!!} - -- subst (λ k → Any (_≡_ (perm→FL [ g , h ])) k) {!!} (comm8 L5 L4 (cons a L3 {!!}) a₁ ) comm7 [] L3 = comm3 L1 b L3 comm7 (cons a L4 x) L3 = comm8 L1 L4 L3 a comm2 (cons x L xr) L1 (there a) b L3 = comm2 L L1 a b {!!}
--- a/FLutil.agda Sun Nov 29 00:28:19 2020 +0900 +++ b/FLutil.agda Sun Nov 29 02:57:57 2020 +0900 @@ -304,13 +304,18 @@ nextAny (here x₁) = there (here x₁) nextAny (there any) = there (there any) - AnyFList : {n : ℕ } → (x : FL n ) → Any (x ≡_ ) (∀Flist fmax) AnyFList {zero} f0 = here refl -AnyFList {suc zero} (x :: f0) = {!!} -AnyFList {suc (suc n)} (x :: y) = AnyFList1 (suc n) a<sa (∀Flist fmax) (∀Flist fmax) fin<n (AnyFList y) where - AnyFList1 : (i : ℕ) → (i<n : i < suc (suc n) ) → (L L1 : FList (suc n) ) → toℕ x < suc i → Any (y ≡_ ) L1 → Any ((x :: y) ≡_ ) (Flist i i<n L L1) - AnyFList1 = {!!} +AnyFList {suc zero} (zero :: f0) = here refl +AnyFList {suc (suc n)} (x :: y) = subst (λ k → Any (_≡_ (k :: y)) (Flist (suc n) a<sa (∀Flist fmax) (∀Flist fmax) )) + (fromℕ<-toℕ _ _) ( AnyFList1 (suc n) (toℕ x) a<sa (∀Flist fmax) (∀Flist fmax) fin<n fin<n (AnyFList y)) where + AnyFList1 : (i x : ℕ) → (i<n : i < suc (suc n) ) → (L L1 : FList (suc n) ) → (x<n : x < suc (suc n) ) → x < suc i → Any (y ≡_ ) L + → Any (((fromℕ< x<n) :: y) ≡_ ) (Flist i i<n L L1) + AnyFList1 zero x i<n [] L1 (s≤s x<i) _ () + AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (here refl) = x∈FLins (zero :: a) (Flist 0 i<n L L1) + AnyFList1 zero zero i<n (cons a L xr) L1 x<n (s≤s z≤n) (there wh) with AnyFList1 zero zero i<n L L1 x<n (s≤s z≤n) wh + ... | t = {!!} + AnyFList1 (suc i) x i<n L L1 x<n x<i wh = {!!} -- FLinsert membership