Mercurial > hg > Members > kono > Proof > galois
changeset 203:0462c99f32cb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Dec 2020 23:37:29 +0900 |
parents | d9f610c9a4f1 |
children | 84795e6638ce |
files | FLComm.agda |
diffstat | 1 files changed, 15 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Tue Dec 01 16:01:02 2020 +0900 +++ b/FLComm.agda Tue Dec 01 23:37:29 2020 +0900 @@ -48,6 +48,8 @@ open import Algebra open Group (Symmetric n) hiding (refl) +open _∧_ + -- {-# TERMINATING #-} CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x) @@ -68,16 +70,24 @@ comm3 (cons a L _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where - comm8 : (L4 L2 : FList n) → (a : FL n) → (xr : fresh (FL n) ⌊ _f<?_ ⌋ a L4) - → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) - → Any (_≡_ (perm→FL [ g , h ])) (tl2 (cons a L4 xr) L1 L2) - comm8 L4 L2 a xr any = {!!} + comm9 : (L4 L1 L2 : FList n) → (a a₁ : FL n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) → + Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) + comm8 : (L L4 L2 : FList n) → (a : FL n) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 L2) + → Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a L L2)) + comm8 [] L4 L2 a any = any + comm8 (cons a₁ L x) L4 L2 a any = comm8 L L4 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a (comm9 L4 L1 L2 a a₁ any) + comm9 [] L1 L2 a a₁ any = insAny _ any + comm9 (cons a₂ L4 x) L1 L2 a a₁ any = comm8 L1 ? (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2) a {!!} + --- Any (_≡_ (perm→FL [ g , h ])) (tl2 L4 L1 (tl3 a₂ L1 L2)) + --- → Any (_≡_ (perm→FL [ g , h ])) (tl2 (cons a₂ L4 x) L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ]) L2)) + --- tl2 L4 L1 (tl3 a₂ L1 (FLinsert (perm→FL [ FL→perm a , FL→perm a₁ ] L2) -- found g, we have to walk thru till the end comm7 : (L L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl2 L L1 (tl3 G L1 L3)) -- at the end, find h comm7 [] L3 = comm3 L1 b L3 -- add n path - comm7 (cons a L4 xr) L3 = comm8 L4 (tl3 G L1 L3) a xr (comm7 L4 L3) + comm7 (cons a L4 xr) L3 = comm8 L1 L4 (tl3 G L1 L3) a (comm7 L4 L3) -- accumerate tl3 comm2 (cons x L xr) L1 (there a) b L3 = comm2 L L1 a b (tl3 x L1 L3) CommStage→ (suc i) x (ccong {f} {x} eq p) = subst (λ k → Any (k ≡_) (tl2 (CommFListN i) (CommFListN i) [])) (comm4 eq) (CommStage→ (suc i) f p ) where