Mercurial > hg > Members > kono > Proof > galois
changeset 211:08166685ed2c
anyComm
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 05 Dec 2020 11:49:12 +0900 |
parents | 2eb62a2a34f2 |
children | fa1e0944d1a0 |
files | FLComm.agda |
diffstat | 1 files changed, 37 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sat Dec 05 09:41:16 2020 +0900 +++ b/FLComm.agda Sat Dec 05 11:49:12 2020 +0900 @@ -33,6 +33,8 @@ open Group (Symmetric n) hiding (refl) open Solvable (Symmetric n) open _∧_ +-- open import Relation.Nary using (⌊_⌋) +open import Relation.Nullary.Decidable hiding (⌊_⌋) -- Flist : {n : ℕ } (i : ℕ) → i < suc n → FList n → FList n → FList (suc n) -- Flist zero i<n [] _ = [] @@ -61,18 +63,22 @@ -- loop on i any02 : (i : ℕ ) → (i<n : i < suc n ) → (a : FL n) → AnyFL (suc n) (fromℕ< i<n :: a) → AnyFL (suc n) (zero :: a) any02 zero (s≤s z≤n) a any = any - any02 (suc i) i<n a any = any02 i {!!} a {!!} + any02 (suc i) (s≤s i<n) a any = any02 i (<-trans i<n a<sa) a record { anyList = cons ((fromℕ< (s≤s i<n )) :: a) (anyList any) any07 ; anyP = any08 } where + any07 : fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< (s≤s i<n) :: a) (anyList any) + any07 = {!!} + any08 : (x : FL (suc n)) → (fromℕ< (<-trans i<n a<sa) :: a) f≤ x → Any (_≡ x) (cons (fromℕ< (s≤s i<n) :: a) (anyList any) any07 ) + any08 = {!!} -- loop on a any03 : (L : FList n) → (a : FL n) → fresh (FL n) ⌊ _f<?_ ⌋ a L → AnyFL (suc n) (fromℕ< a<sa :: a ) → AnyFL (suc n) FL0 any03 [] a ar any = {!!} -- any02 n a<sa a any - any03 (cons b L br) a (a<b Data.Product., _) any = any03 L b br record { anyList = anyList any04 ; anyP = any05 } where - any06 : {n : ℕ} → zero Data.Fin.< fromℕ< {n} a<sa - any06 = {!!} + any03 (cons b L br) a ( Data.Product._,_ (Level.lift a<b)_) any = any03 L b br record { anyList = anyList any04 ; anyP = any05 } where any04 : AnyFL (suc n) (zero :: a) any04 = any02 n a<sa a any any05 : (x : FL (suc n)) → (fromℕ< a<sa :: b) f≤ x → Any (_≡ x) (anyList any04) -- 0<fmax : zero Data.Fin.< fromℕ< a<sa - any05 .(fromℕ< a<sa :: b) (case1 refl) = anyP any04 (fromℕ< a<sa :: b) (case2 (f<n any06 )) -- (fromℕ< a<sa :: b) f< x → (zero :: a) f≤ x - any05 x (case2 mb<x ) = anyP any04 x (case2 (f<-trans (f<n any06) mb<x )) + any05 x mb≤x = anyP any04 x (any06 a b x (toWitness a<b) mb≤x) where + any06 : {n : ℕ } → (a b : FL n) → (x : FL (suc n)) → a f< b → (fromℕ< {n} a<sa :: b) f≤ x → (zero :: a) f≤ x + any06 {suc n} a b x a<b (case1 refl) = case2 (f<n 0<fmax) + any06 {suc n} a b x a<b (case2 mb<x) = case2 (f<-trans (f<n 0<fmax) mb<x) any01 : (i : ℕ ) → (L : FList n) → Any (_≡ FL0) L → AnyFL (suc n) fmax → AnyFL (suc n) FL0 any01 zero [] () any01 (suc i) [] () @@ -80,12 +86,6 @@ any01 (suc i) (cons .FL0 L x) (here refl) any = any01 i L {!!} {!!} -- can't happen any01 (suc i) (cons a L ar) (there b) any = any03 L a ar {!!} --- all comm cobmbibation in P and Q -record AnyComm (P Q : FList n) : Set where - field - commList : FList n - commAny : (p q : FL n) → Any (p ≡_) P → Any (q ≡_) Q → Any ( _≡ perm→FL [ FL→perm p , FL→perm q ] ) commList - tl3 : (FL n) → ( z : FList n) → FList n → FList n tl3 h [] w = w tl3 h (x ∷# z) w = tl3 h z (FLinsert ( perm→FL [ FL→perm h , FL→perm x ] ) w ) @@ -100,6 +100,31 @@ CommFListN 0 = ∀Flist fmax CommFListN (suc i) = CommFList (CommFListN i) +-- all comm cobmbination in P and Q +record AnyComm (P Q : FList n) : Set where + field + commList : FList n + commAny : (p q : FL n) → Any (p ≡_) P → Any (q ≡_) Q → Any ( _≡ perm→FL [ FL→perm p , FL→perm q ] ) commList + +open AnyComm +anyComm : (P Q : FList n) → AnyComm P Q +anyComm [] [] = record { commList = [] ; commAny = λ _ _ () } +anyComm [] (cons q Q qr) = record { commList = [] ; commAny = λ _ _ () } +anyComm (cons p P pr) [] = record { commList = [] ; commAny = λ _ _ _ () } +anyComm (cons p P pr) (cons q Q qr) = record { + commList = cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) anyc00 ; commAny = anyc01 } where + anyc00 : fresh (FL n) ⌊ _f<?_ ⌋ (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) + anyc00 = {!!} + anyc01 : (p₁ q₁ : FL n) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → + Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q₁ ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) anyc00) + anyc01 p q (here refl) (here refl) = here refl + anyc01 p q₁ (here refl) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p q₁ (here refl) anyq ) + anyc01 p₁ q (there anyp) (here refl) = anyc02 (commAny (anyComm P (cons q Q qr)) p₁ q anyp (here refl)) where + anyc02 : Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (commList (anyComm P (cons q Q qr))) + → Any (_≡ perm→FL [ FL→perm p₁ , FL→perm q ]) (cons (perm→FL [ FL→perm p , FL→perm q ]) (commList (anyComm (cons p P pr) Q)) anyc00) + anyc02 t = ? + anyc01 p₁ q₁ (there anyp) (there anyq) = there (commAny (anyComm (cons p P pr) Q) p₁ q₁ (there anyp) anyq ) + -- {-# TERMINATING #-} CommStage→ : (i : ℕ) → (x : Permutation n n ) → deriving i x → Any (perm→FL x ≡_) ( CommFListN i ) CommStage→ zero x (Level.lift tt) = AnyFList (perm→FL x)