Mercurial > hg > Members > kono > Proof > galois
changeset 125:11ccc9fe91c3
sym3 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Sep 2020 20:20:22 +0900 |
parents | 803a45b280ef |
children | d5f093061b46 |
files | sym3.agda |
diffstat | 1 files changed, 74 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/sym3.agda Fri Sep 04 19:07:39 2020 +0900 +++ b/sym3.agda Fri Sep 04 20:20:22 2020 +0900 @@ -42,13 +42,13 @@ p5 = FL→perm ((# 2) :: ((# 1) :: ((# 0 ) :: f0))) t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] --- t1 = plist [ p0 , p0 ] ∷ plist [ p1 , p0 ] ∷ plist [ p2 , p0 ] ∷ plist [ p3 , p0 ] ∷ plist [ p4 , p0 ] ∷ plist [ p5 , p1 ] ∷ --- plist [ p0 , p1 ] ∷ plist [ p1 , p1 ] ∷ plist [ p2 , p1 ] ∷ plist [ p3 , p1 ] ∷ plist [ p4 , p1 ] ∷ plist [ p5 , p1 ] ∷ --- plist [ p0 , p2 ] ∷ plist [ p1 , p2 ] ∷ plist [ p2 , p2 ] ∷ plist [ p3 , p2 ] ∷ plist [ p4 , p2 ] ∷ plist [ p5 , p2 ] ∷ --- plist [ p0 , p3 ] ∷ plist [ p1 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p4 , p3 ] ∷ plist [ p5 , p3 ] ∷ --- plist [ p0 , p4 ] ∷ plist [ p1 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p4 ] ∷ --- plist [ p0 , p5 ] ∷ plist [ p1 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p5 ] ∷ --- [] + t1 = plist [ p0 , p0 ] ∷ plist [ p1 , p0 ] ∷ plist [ p2 , p0 ] ∷ plist [ p3 , p0 ] ∷ plist [ p4 , p0 ] ∷ plist [ p5 , p1 ] ∷ + plist [ p0 , p1 ] ∷ plist [ p1 , p1 ] ∷ plist [ p2 , p1 ] ∷ plist [ p3 , p1 ] ∷ plist [ p4 , p1 ] ∷ plist [ p5 , p1 ] ∷ + plist [ p0 , p2 ] ∷ plist [ p1 , p2 ] ∷ plist [ p2 , p2 ] ∷ plist [ p3 , p2 ] ∷ plist [ p4 , p2 ] ∷ plist [ p5 , p2 ] ∷ + plist [ p0 , p3 ] ∷ plist [ p1 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p3 , p3 ] ∷ plist [ p4 , p3 ] ∷ plist [ p5 , p3 ] ∷ + plist [ p0 , p4 ] ∷ plist [ p1 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p3 , p4 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p4 ] ∷ + plist [ p0 , p5 ] ∷ plist [ p1 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p3 , p5 ] ∷ plist [ p4 , p4 ] ∷ plist [ p5 , p5 ] ∷ + [] open _=p=_ @@ -96,6 +96,8 @@ -- p4 ⟨$⟩ʳ q -- ∎ ) } + st00 = perm→FL [ FL→perm ((suc zero) :: (suc zero :: (zero :: f0 ))) , FL→perm ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) ] + st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) @@ -110,30 +112,65 @@ case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) - ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} - ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} - ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} - ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} - ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} + + ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (zero :: (suc zero) :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 ))| record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0))| record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc zero) :: (zero :: (zero :: f0 ))) | ((suc (suc zero)) :: (zero :: (zero :: f0 )))| record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((zero :: (suc zero) :: (zero :: f0 )) ) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | ((suc zero) :: (suc zero :: (zero :: f0 ))) | record { eq = ge } | record { eq = he } = + case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + ... | ((suc (suc zero)) :: (suc zero) :: (zero :: f0)) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) - stage12 = {!!} --- stage12 x uni = case1 prefl --- stage12 x (comm {g} {h} x1 y1 ) = st02 g h --- stage12 _ (gen {x} {y} sx sy) with stage12 x sx | stage12 y sy --- ... | case1 t | case1 s = case1 ( record { peq = λ q → peq (presp t s) q} ) --- ... | case1 t | case2 (case1 s) = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) --- ... | case1 t | case2 (case2 s) = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) --- ... | case2 (case1 t) | case1 s = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) --- ... | case2 (case2 t) | case1 s = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) --- ... | case2 (case1 s) | case2 (case1 t) = case2 (case2 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p33=4 q) } ) --- ... | case2 (case1 s) | case2 (case2 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p34=0 q) } --- ... | case2 (case2 s) | case2 (case1 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p43=0 q) } --- ... | case2 (case2 s) | case2 (case2 t) = case2 (case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p44=3 q) } ) --- stage12 _ (ccong {y} x=y sx) with stage12 y sx --- ... | case1 id = case1 ( ptrans (psym x=y ) id ) --- ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) --- ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) + stage12 x uni = case1 prefl + stage12 x (comm {g} {h} x1 y1 ) = st02 g h + stage12 _ (gen {x} {y} sx sy) with stage12 x sx | stage12 y sy + ... | case1 t | case1 s = case1 ( record { peq = λ q → peq (presp t s) q} ) + ... | case1 t | case2 (case1 s) = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case1 t | case2 (case2 s) = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case1 t) | case1 s = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case2 t) | case1 s = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case1 s) | case2 (case1 t) = case2 (case2 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p33=4 q) } ) + ... | case2 (case1 s) | case2 (case2 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p34=0 q) } + ... | case2 (case2 s) | case2 (case1 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p43=0 q) } + ... | case2 (case2 s) | case2 (case2 t) = case2 (case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p44=3 q) } ) + stage12 _ (ccong {y} x=y sx) with stage12 y sx + ... | case1 id = case1 ( ptrans (psym x=y ) id ) + ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ )) + ... | case2 (case2 x₁) = case2 (case2 ( ptrans (psym x=y ) x₁ )) solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid @@ -158,14 +195,12 @@ ≡⟨ f=e q ⟩ q ∎ - solved1 _ (comm {g} {h} x y) = {!!} --- solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y --- ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) --- ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) --- ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) --- ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } --- ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } --- ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } --- ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } + solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y + ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) + ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) + ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) + ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } + ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } + ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } + ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } - -- = ptrans ( comm-resp {g} {h} t s ) ( comm-refl ? )