Mercurial > hg > Members > kono > Proof > galois
changeset 42:25273e17a018
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Aug 2020 18:32:54 +0900 |
parents | 84c84695de94 |
children | 831edb0a5296 |
files | Symmetric.agda |
diffstat | 1 files changed, 35 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Thu Aug 20 14:13:08 2020 +0900 +++ b/Symmetric.agda Thu Aug 20 18:32:54 2020 +0900 @@ -122,17 +122,11 @@ piso→ (suc zero) = refl piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) -Finnm : {n m : ℕ } → Fin (n + m) ≡ Fin (m + n) -Finnm {n} {m} = cong (λ k → Fin k ) (+-comm n _ ) - -Finnmconv : {n m : ℕ } → Fin (m + n) → Fin (n + m) -Finnmconv {n} {m} x = subst (λ k → Fin k ) (+-comm m _) x - m+n→n : {n m : ℕ } → (x : Fin (n + m)) → toℕ x < n → Fin n m+n→n x x<n = fromℕ≤ x<n n→m+n : {n m : ℕ } → (x : Fin n) → Fin (n + m) -n→m+n {n} {m} x = Finnmconv {n} {m} (raise m x ) +n→m+n {n} {m} x = fromℕ≤ (≤-trans (fin<n {n} {x}) (x≤x+y {n} {m}) ) m+n→m : {n m : ℕ } → (x : Fin (n + m)) → n ≤ toℕ x → Fin m m+n→m x n<x = reduce≥ x n<x @@ -148,6 +142,12 @@ lem00 : {n m : ℕ } → n ≡ m → n ≤ m lem00 refl = lem0 +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +lem01 : {n m : ℕ } → (x y : Fin n ) → {a : toℕ x < m } {b : toℕ y < m } → x ≡ y → a ≅ b +lem01 zero zero refl = HE.refl +lem01 (suc x) = {!!} + pconcat : {n m : ℕ } → Permutation n n → Permutation m m → Permutation (n + m) (n + m) pconcat {n} {m} p q = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (n + m) → Fin (n + m) @@ -161,12 +161,36 @@ p← x | tri< a ¬b ¬c = n→m+n (p ⟨$⟩ʳ (m+n→n x a )) p← x | tri≈ ¬a b ¬c = m→m+n (q ⟨$⟩ʳ (m+n→m x (lem00 (sym b)))) p← x | tri> ¬a ¬b c = m→m+n (q ⟨$⟩ʳ (m+n→m x (≤to< c)) ) - + + lem06 : {n m : ℕ } → (eq : n ≡ m ) → (x : Fin n) → toℕ (raise m x) ≡ toℕ x + lem06 refl zero = {!!} + lem06 refl (suc x) = cong (λ k → suc k ) {!!} -- (lem06 refl x) + + lem07 : {n m : ℕ } → (eq : n ≡ m ) → (x : Fin n) → toℕ (cast eq x) ≡ toℕ x + lem07 refl zero = refl + lem07 refl (suc x) = cong (λ k → suc k ) (lem07 refl x) + + lem05 : (x : Fin n ) → toℕ (fromℕ≤ (≤-trans (fin<n {_} {x} ) (x≤x+y {n} {m}))) < n + lem05 x = subst ( λ k → k < n ) (sym (toℕ-fromℕ≤ _ )) fin<n + + -- ff = fromℕ≤ (≤-trans (fin<n {_} {Inverse.from p Π.⟨$⟩ m+n→n x a} ) x≤x+y) piso← : (x : Fin (n + m) ) → p→ ( p← x ) ≡ x piso← x with <-cmp (toℕ x ) n - piso← x | tri< a ¬b ¬c = ? - piso← x | tri≈ ¬a b ¬c = ? - piso← x | tri> ¬a ¬b c = ? + piso← x | tri< a ¬b ¬c = begin + p→ (fromℕ≤ (≤-trans (fin<n {_} {p ⟨$⟩ʳ (m+n→n x a)}) x≤x+y)) + ≡⟨ {!!} ⟩ + n→m+n (p ⟨$⟩ˡ (m+n→n (fromℕ≤ (≤-trans (fin<n {_} {Inverse.from p Π.⟨$⟩ m+n→n x a} ) x≤x+y) ) (lem05 _) )) + ≡⟨ {!!} ⟩ + x + ∎ where + open ≡-Reasoning + lem8 : ( x : Fin (n + m)) → ( a : toℕ x < n ) → p→ x ≡ n→m+n (p ⟨$⟩ˡ (m+n→n x a )) + lem8 x a with <-cmp (toℕ x ) n + lem8 x a | tri< a₁ ¬b ¬c = {!!} + lem8 x a | tri≈ ¬a b ¬c = {!!} + lem8 x a | tri> ¬a ¬b c = {!!} + piso← x | tri≈ ¬a b ¬c = {!!} + piso← x | tri> ¬a ¬b c = {!!} piso→ : (x : Fin (n + m) ) → p← ( p→ x ) ≡ x piso→ = {!!}