Mercurial > hg > Members > kono > Proof > galois
changeset 21:270b28c96154
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 19 Aug 2020 01:00:46 +0900 |
parents | 65e6c97a03cd |
children | ae586c068d01 |
files | Symmetric.agda |
diffstat | 1 files changed, 19 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Tue Aug 18 23:39:31 2020 +0900 +++ b/Symmetric.agda Wed Aug 19 01:00:46 2020 +0900 @@ -3,9 +3,10 @@ open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures -open import Data.Fin hiding ( _<_ ) +open import Data.Fin hiding ( _<_ ; _≤_ ) open import Data.Product open import Data.Fin.Permutation +open import Data.Fin.Properties renaming ( <-cmp to fcmp ; <-trans to ftrans ) open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) @@ -109,8 +110,12 @@ fn (suc n) zero _ = refl fn (suc n) (suc i) (s≤s i<n) = cong (λ k → suc k ) (fn (suc n) i (<-trans i<n a<sa )) -perm→all : { n : ℕ } → (perm : Permutation n n ) → (f : Fin n ) → ¬ ( ( g : Fin n) → ¬ (perm ⟨$⟩ʳ f ≡ g )) -perm→all = {!!} +record Pincl (i j : ℕ ) (p→i : Fin j → Fin j) : Set (Level.suc Level.zero ) where + field + p←i : Fin j → Fin j + piso←i : ( x : Fin j ) → (i≤x : i ≤ toℕ x) → p←i ( p→i x) i≤x ≡ x + piso→i : ( x : Fin j ) → (i≤x : i ≤ toℕ x) → p→i ( p←i i≤x x) ≡ x + fperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) fperm {zero} () @@ -123,15 +128,18 @@ p→ x | tri≈ ¬a b ¬c = fromℕ≤ a<sa p→ x | tri> ¬a ¬b c = fin+1 (perm ⟨$⟩ʳ (fromℕ≤ (pred<n {_} {x} 0<s ))) + pincl : Pincl (suc (suc n)) (suc (suc n)) p→ + pincl = pincl1 (suc n) ? ? where + pincl1 : (i : ℕ ) → i < suc (suc n) → Pincl i → Pincl (suc i) + pincl1 0 = ? + p← : Fin (suc (suc n)) → Fin (suc (suc n)) - p← x = lemma (suc n) refl x where - lemma : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → Fin (suc (suc n)) - lemma i refl x with <-cmp (toℕ x) i - lemma i refl x | tri< a ¬b ¬c = fin+1 (perm ⟨$⟩ˡ (fromℕ≤ x<sn)) where - x<sn : toℕ x < suc n - x<sn = a - lemma i refl x | tri≈ ¬a b ¬c = fromℕ≤ (s≤s (s≤s m<n)) - lemma i refl x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) + p← x = find (fromℕ≤ a<sa) where + find : (y : Fin (suc (suc n))) → Fin (suc (suc n)) + find y with fcmp x ( p→ y ) + find y | tri< a ¬b ¬c = {!!} + find y | tri≈ ¬a b ¬c = y + find y | tri> ¬a ¬b c = {!!} piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x piso← x = {!!} piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x