Mercurial > hg > Members > kono > Proof > galois
changeset 115:32df4073746e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 03 Sep 2020 09:11:05 +0900 |
parents | eb1dcba4752e |
children | 6022d00a0690 |
files | sym5.agda |
diffstat | 1 files changed, 15 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Wed Sep 02 19:20:20 2020 +0900 +++ b/sym5.agda Thu Sep 03 09:11:05 2020 +0900 @@ -27,7 +27,7 @@ open _∧_ ¬sym5solvable : ¬ ( solvable (Symmetric 5) ) -¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (proj1 (dervie-any-3rot0 (dervied-length sol) 0<3 0<4 ) )) where +¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (dervie-any-3rot0 (dervied-length sol) 0<3 0<4 ) ) where -- -- dba 1320 d → b → a → d @@ -173,6 +173,11 @@ record { dba0<3 = # 2 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl } + -3=33 : pinv 3rot =p= (3rot ∘ₚ 3rot ) + -3=33 = pleq _ _ refl + + -- so aec-triple ≡ dba-triple, cong-Triple is valid but difficutl to prove + -- aec-triple : {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → Triple i<3 j<4 (pinv 3rot ) aec-triple z≤n z≤n = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl } aec-triple z≤n (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl } @@ -197,7 +202,6 @@ record { dba0<3 = # 2 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl } - dervie-any-3rot0 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → deriving n (abc i<3 j<4 ) dervie-any-3rot1 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) @@ -206,25 +210,27 @@ → deriving n (aec i<3 j<4 ) dervie-any-3rot0 0 i<3 j<4 = lift tt - dervie-any-3rot0 (suc i) i<3 j<4 = + dervie-any-3rot0 (suc i) i<3 j<4 = ccong {deriving i} ( psym (abc= tc)) ( comm {deriving i} {dba (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))} {aec (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc))} ( dervie-any-3rot1 i (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))) ( dervie-any-3rot2 i (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc)))) where tc = triple i<3 j<4 - dervie-any-3rot1 (suc i) i<3 j<4 = {!!} + dervie-any-3rot1 0 i<3 j<4 = lift tt + dervie-any-3rot1 (suc i) i<3 j<4 = ccong {deriving i} ( psym (abc= tdba )) ( comm {deriving i} {aec (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))} {abc (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba))} - (dervie-any-3rot2 i (fin≤n {3} (dba0<3 tdba) (fin≤n {4} (dba1<4 tdba) ))) - (dervie-any-3rot0 i (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba) ))) where + (dervie-any-3rot2 i (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))) + (dervie-any-3rot0 i (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba)))) where tdba = dba-triple i<3 j<4 - dervie-any-3rot2 (suc i) i<3 j<4 = {!!} + dervie-any-3rot2 0 i<3 j<4 = lift tt + dervie-any-3rot2 (suc i) i<3 j<4 = ccong {deriving i} ( psym (abc= (aec-triple i<3 j<4) )) ( comm {deriving i} {abc (fin≤n {3} (dba0<3 taec)) (fin≤n {4} (dba1<4 taec) )} {dba (fin≤n {3} (aec0<3 taec)) (fin≤n {4} (aec1<4 taec))} - ( dervie-any-3rot0 i (fin≤n {3} (dba0<3 taec) (fin≤n {4} (dba1<4 taec) ))) - ( dervie-any-3rot1 i (fin≤n {3} (aec0<3 taec) (fin≤n {4} (aec1<4 taec))))) where + ( dervie-any-3rot0 i (fin≤n {3} (dba0<3 taec)) (fin≤n {4} (dba1<4 taec))) + ( dervie-any-3rot1 i (fin≤n {3} (aec0<3 taec)) (fin≤n {4} (aec1<4 taec)))) where taec = aec-triple i<3 j<4 open _=p=_