Mercurial > hg > Members > kono > Proof > galois
changeset 127:43d00372bdc9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 05 Sep 2020 08:59:57 +0900 |
parents | d5f093061b46 |
children | 206fc12e5c36 |
files | sym4.agda |
diffstat | 1 files changed, 38 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/sym4.agda Fri Sep 04 20:20:34 2020 +0900 +++ b/sym4.agda Sat Sep 05 08:59:57 2020 +0900 @@ -66,20 +66,45 @@ p0id : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid p0id = pleq _ _ refl - p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0) :: ((# 0 ) :: f0)))) - p1 = FL→perm ((# 0) :: ((# 0) :: ((# 1) :: ((# 0 ) :: f0)))) - p2 = FL→perm ((# 0) :: ((# 1) :: ((# 0) :: ((# 0 ) :: f0)))) - p3 = FL→perm ((# 0) :: ((# 1) :: ((# 1) :: ((# 0 ) :: f0)))) - p4 = FL→perm ((# 0) :: ((# 2) :: ((# 0) :: ((# 0 ) :: f0)))) - p5 = FL→perm ((# 0) :: ((# 2) :: ((# 1) :: ((# 0 ) :: f0)))) - p6 = FL→perm ((# 1) :: ((# 0) :: ((# 0) :: ((# 0 ) :: f0)))) - p7 = FL→perm ((# 1) :: ((# 0) :: ((# 1) :: ((# 0 ) :: f0)))) - p8 = FL→perm ((# 1) :: ((# 1) :: ((# 0) :: ((# 0 ) :: f0)))) - p9 = FL→perm ((# 1) :: ((# 1) :: ((# 1) :: ((# 0 ) :: f0)))) - pa = FL→perm ((# 1) :: ((# 2) :: ((# 0) :: ((# 0 ) :: f0)))) - pb = FL→perm ((# 1) :: ((# 2) :: ((# 1) :: ((# 0 ) :: f0)))) - t0 = plist p0 ∷ plist p1 ∷ plist p2 ∷ plist p3 ∷ plist p4 ∷ plist p5 ∷ [] + -- stage 1 (A4) + p0 = (zero :: zero :: zero :: zero :: f0 ) + p1 = (zero :: suc zero :: suc zero :: zero :: f0 ) + p2 = (zero :: suc (suc zero) :: zero :: zero :: f0 ) + p3 = (suc zero :: zero :: suc zero :: zero :: f0 ) + p4 = (suc zero :: suc zero :: zero :: zero :: f0 ) + p5 = (suc zero :: suc (suc zero) :: suc zero :: zero :: f0 ) + p6 = (suc (suc zero) :: zero :: zero :: zero :: f0 ) + p7 = (suc (suc zero) :: suc zero :: suc zero :: zero :: f0 ) + p8 = (suc (suc zero) :: suc (suc zero) :: zero :: zero :: f0 ) + p9 = (suc (suc (suc zero)) :: zero :: suc zero :: zero :: f0 ) + pa = (suc (suc (suc zero)) :: suc zero :: zero :: zero :: f0 ) + pb = (suc (suc (suc zero)) :: suc (suc zero) :: suc zero :: zero :: f0 ) + + t0 = plist (FL→perm p0 ) ∷ plist (FL→perm p1 ) ∷ plist (FL→perm p2 ) ∷ plist (FL→perm p3 ) ∷ plist (FL→perm p4 ) ∷ plist (FL→perm p5 ) ∷ + plist (FL→perm p6 ) ∷ plist (FL→perm p7 ) ∷ plist (FL→perm p8 ) ∷ plist (FL→perm p9 ) ∷ plist (FL→perm pa ) ∷ plist (FL→perm pb ) ∷ [] + t1 : List (FL 4) → List (FL 4) + t1 x = tl2 x x [] where + tl3 : (FL 4) → ( z : List (FL 4)) → List (FL 4) → List (FL 4) + tl3 h [] w = w + tl3 h (x ∷ z) w = tl3 h z (( perm→FL [ FL→perm h , FL→perm x ] ) ∷ w ) + tl2 : ( x z : List (FL 4)) → List (FL 4) → List (FL 4) + tl2 [] _ x = x + tl2 (h ∷ x) z w = tl2 x z (tl3 h z w) + + stage1 : List (FL 4) + stage1 = t1 ( ∀-FL 3 ) + + -- stage2 ( Kline ) + -- k0 p0 zero :: zero :: zero :: zero :: f0 ∷ (0 ∷ 1 ∷ 2 ∷ 3 ∷ []) ∷ + -- k1 p3 suc zero :: zero :: suc zero :: zero :: f0 ∷ (1 ∷ 0 ∷ 3 ∷ 2 ∷ []) ∷ + -- k2 p8 suc (suc zero) :: suc (suc zero) :: zero :: zero :: f0 ∷ (2 ∷ 3 ∷ 0 ∷ 1 ∷ []) + -- k3 pb suc (suc (suc zero)) :: suc (suc zero) :: suc zero :: zero :: f0 ∷ (3 ∷ 2 ∷ 1 ∷ 0 ∷ []) + + tb = plist ( FL→perm p0) ∷ plist ( FL→perm p3) ∷ plist ( FL→perm p8) ∷ plist ( FL→perm pb) ∷ [] + + stage2 : List (FL 4) + stage2 = t1 ( p0 ∷ p1 ∷ p2 ∷ p3 ∷ p4 ∷ p5 ∷ p6 ∷ p7 ∷ p8 ∷ p9 ∷ pa ∷ pb ∷ [] ) solved1 : (x : Permutation 4 4) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid solved1 = {!!}