Mercurial > hg > Members > kono > Proof > galois
changeset 66:442873eaf80b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 14:40:11 +0900 |
parents | aeb6b588db01 |
children | 3825082ebdbd |
files | Putil.agda |
diffstat | 1 files changed, 9 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Mon Aug 24 14:20:51 2020 +0900 +++ b/Putil.agda Mon Aug 24 14:40:11 2020 +0900 @@ -282,24 +282,25 @@ -- FL←iso {0} perm = record { peq = λ () } -- FL←iso {suc n} perm = {!!} +lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n +lem2 i≤n = ≤-trans i≤n ( refl-≤s ) + ∀-FL : {n : ℕ } → Fin n → List (FL n) ∀-FL x = ∀-FL1 x where - ∀-FL2 : { n : ℕ } → Fin (suc n) → List (FL n) → List (FL (suc n)) → List (FL (suc n)) - ∀-FL2 zero [] t = t - ∀-FL2 zero (x ∷ fls) t = ∀-FL2 zero fls (( zero :: x ) ∷ t ) - ∀-FL2 (suc x) [] t = t - ∀-FL2 (suc x) (y ∷ fls) t = ∀-FL2 (suc x) fls (( (suc x) :: y ) ∷ t ) + ∀-FL2 : { n : ℕ } → Fin (suc n) → (i : ℕ ) → i ≤ n → List (FL n) → List (FL (suc n)) → List (FL (suc n)) + ∀-FL2 y zero z≤n [] t = t + ∀-FL2 y zero z≤n (x ∷ fls) t = ∀-FL2 y zero z≤n fls (( zero :: x ) ∷ t ) + ∀-FL2 y (suc i) (s≤s lt) [] t = t + ∀-FL2 y (suc i) (s≤s lt) (fl ∷ fls) t = ∀-FL2 y i (lem2 lt) (fl ∷ fls) (( fromℕ≤ (s≤s (s≤s lt)) :: fl ) ∷ t ) ∀-FL1 : {n : ℕ } → (Fin n) → List (FL n) ∀-FL1 zero = [] - ∀-FL1 (suc x) = ∀-FL2 (suc x) ( ∀-FL1 x) [] + ∀-FL1 (suc x) = ∀-FL2 (suc x) (toℕ x) (≤-trans refl-≤s fin<n ) ( ∀-FL1 x) [] all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) all-perm n = pls6 n where lem1 : {i n : ℕ } → i ≤ n → i < suc n lem1 z≤n = s≤s z≤n lem1 (s≤s lt) = s≤s (lem1 lt) - lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n - lem2 i≤n = ≤-trans i≤n ( refl-≤s ) pls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n)) → List (Permutation (suc n) (suc n)) pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x pls4 (suc i) n i≤n perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n ∷ x)