Mercurial > hg > Members > kono > Proof > galois
changeset 93:4cae99fadd61
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Aug 2020 12:06:57 +0900 |
parents | 2e5d0b142eca |
children | 4efab088abd0 |
files | Putil.agda |
diffstat | 1 files changed, 24 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Sat Aug 29 09:36:52 2020 +0900 +++ b/Putil.agda Sat Aug 29 12:06:57 2020 +0900 @@ -174,29 +174,35 @@ piso→ zero with <-cmp (toℕ (fromℕ< (≤-trans (s≤s z≤n) (s≤s (s≤s m≤n) )))) (suc m) ... | tri< a ¬b ¬c = refl piso→ (suc x) with <-cmp (toℕ (suc x)) (suc m) - ... | tri≈ ¬a b ¬c = {!!} + ... | tri≈ ¬a b ¬c = p13 {!!} refl where + p13 : (y : Fin (suc (suc n)) ) → y ≡ {!!} → p← y ≡ suc x + p13 = {!!} ... | tri> ¬a ¬b c = {!!} ... | tri< a ¬b ¬c = p10 (fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) ))) refl where p10 : (y : Fin (suc (suc n)) ) → y ≡ fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) → p← y ≡ suc x p10 zero () - p10 (suc y) eq with <-cmp (toℕ y) (suc m) -- eq : suc y ≡ suc (suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) , a : suc x < suc m - ... | tri< a₁ ¬b ¬c = p11 where - p12 : (toℕ (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) ≡ (toℕ x) - p12 = {!!} - p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x - p11 = begin - fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) - ≡⟨ {!!} ⟩ - fromℕ< (≤-trans (fin<n {_} {suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))}) a≤sa ) - ≡⟨ {!!} ⟩ - fromℕ< (≤-trans (fin<n {_} {fromℕ< (≤-trans a (s≤s m≤n))}) a≤sa ) - ≡⟨ fromℕ<-irrelevant _ _ (cong suc p12 ) (≤-trans (fin<n {_} {fromℕ< (≤-trans a (s≤s m≤n))}) a≤sa) (s≤s (fin<n {suc n})) ⟩ - suc (fromℕ< (fin<n {suc n} {x} )) - ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ - suc x + p10 (suc y) eq = p15 where + p12 : toℕ y ≡ suc (toℕ x) + p12 = begin + toℕ y + ≡⟨ cong (λ k → Data.Nat.pred (toℕ k)) eq ⟩ + toℕ (fromℕ< (≤-trans a (s≤s m≤n))) + ≡⟨ toℕ-fromℕ< {suc (toℕ x)} {suc n} (≤-trans a (s≤s m≤n)) ⟩ + suc (toℕ x) ∎ - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b c = {!!} + p15 : p← (suc y) ≡ suc x + p15 with <-cmp (toℕ y) (suc m) -- eq : suc y ≡ suc (suc (fromℕ< (≤-pred (≤-trans a (s≤s m≤n))))) , a : suc x < suc m + ... | tri< a₁ ¬b ¬c = p11 where + p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x + p11 = begin + fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) + ≡⟨ fromℕ<-irrelevant _ _ p12 _ (s≤s (fin<n {suc n})) ⟩ + suc (fromℕ< (fin<n {suc n} {x} )) + ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ + suc x + ∎ + ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< b (subst (λ k → k < suc m) (sym p12) a )) -- suc x < suc m -> y = suc x → toℕ y < suc m + ... | tri> ¬a ¬b c = ⊥-elim ( nat-<> c (subst (λ k → k < suc m) (sym p12) a )) piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x piso← zero with <-cmp (toℕ (fromℕ< (s≤s (s≤s m≤n)))) (suc m) | mm