Mercurial > hg > Members > kono > Proof > galois
changeset 94:4efab088abd0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Aug 2020 12:27:18 +0900 |
parents | 4cae99fadd61 |
children | 7030fe612746 |
files | Putil.agda |
diffstat | 1 files changed, 20 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Sat Aug 29 12:06:57 2020 +0900 +++ b/Putil.agda Sat Aug 29 12:27:18 2020 +0900 @@ -124,21 +124,21 @@ -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] plist ( pins {3} (n≤ 1) ) 1 ∷ 0 ∷ 2 ∷ 3 ∷ [] -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ [] plist ( pins {3} (n≤ 2) ) 2 ∷ 0 ∷ 1 ∷ 3 ∷ [] -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ [] plist ( pins {3} (n≤ 3) ) 3 ∷ 0 ∷ 1 ∷ 2 ∷ [] -pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) -pins {_} {zero} _ = pid -pins {suc _} {suc zero} _ = pswap pid -pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where - pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) - pins1 _ zero _ = pid - pins1 zero _ _ = pid - pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n a≤sa ) +-- pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) +-- pins {_} {zero} _ = pid +-- pins {suc _} {suc zero} _ = pswap pid +-- pins {suc (suc n)} {suc m} (s≤s m<n) = pins1 (suc m) (suc (suc n)) lem0 where +-- pins1 : (i j : ℕ ) → j ≤ suc (suc n) → Permutation (suc (suc (suc n ))) (suc (suc (suc n))) +-- pins1 _ zero _ = pid +-- pins1 zero _ _ = pid +-- pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j} (s≤s (s≤s si≤n)) ∘ₚ pins1 i j (≤-trans si≤n a≤sa ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) open ≡-Reasoning -pins' : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) -pins' {_} {zero} _ = pid -pins' {suc n} {suc m} (s≤s m≤n) = permutation p← p→ record { left-inverse-of = piso← ; right-inverse-of = piso→ } where +pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) +pins {_} {zero} _ = pid +pins {suc n} {suc m} (s≤s m≤n) = permutation p← p→ record { left-inverse-of = piso← ; right-inverse-of = piso→ } where next : Fin (suc (suc n)) → Fin (suc (suc n)) next zero = suc zero @@ -174,10 +174,13 @@ piso→ zero with <-cmp (toℕ (fromℕ< (≤-trans (s≤s z≤n) (s≤s (s≤s m≤n) )))) (suc m) ... | tri< a ¬b ¬c = refl piso→ (suc x) with <-cmp (toℕ (suc x)) (suc m) - ... | tri≈ ¬a b ¬c = p13 {!!} refl where - p13 : (y : Fin (suc (suc n)) ) → y ≡ {!!} → p← y ≡ suc x - p13 = {!!} - ... | tri> ¬a ¬b c = {!!} + ... | tri≈ ¬a refl ¬c = p13 where + p13 : fromℕ< (s≤s (s≤s m≤n)) ≡ suc x + p13 = cong (λ k → suc k ) (fromℕ<-toℕ _ (s≤s m≤n) ) + ... | tri> ¬a ¬b c = p16 (suc x) where + p16 : (x : Fin (suc (suc n))) → p← x ≡ x + p16 zero = {!!} + p16 (suc x) = {!!} ... | tri< a ¬b ¬c = p10 (fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) ))) refl where p10 : (y : Fin (suc (suc n)) ) → y ≡ fromℕ< (≤-trans (s≤s a) (s≤s (s≤s m≤n) )) → p← y ≡ suc x p10 zero () @@ -239,8 +242,8 @@ suc x ∎ -t7 = plist (pins' {3} (n≤ 3)) ∷ plist (flip ( pins' {3} (n≤ 3) )) ∷ plist ( pins' {3} (n≤ 3) ∘ₚ flip ( pins' {3} (n≤ 3))) ∷ [] -t8 = {!!} +t7 = plist (pins {3} (n≤ 3)) ∷ plist (flip ( pins {3} (n≤ 3) )) ∷ plist ( pins {3} (n≤ 3) ∘ₚ flip ( pins {3} (n≤ 3))) ∷ [] +-- t8 = {!!} plist2 : {n : ℕ} → Permutation (suc n) (suc n) → (i : ℕ ) → i < suc n → List ℕ