Mercurial > hg > Members > kono > Proof > galois
changeset 19:5091302d990d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 18 Aug 2020 23:21:03 +0900 |
parents | 71ba20fff6f6 |
children | 65e6c97a03cd ce6a1a08653a |
files | Symmetric.agda |
diffstat | 1 files changed, 23 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Tue Aug 18 22:50:41 2020 +0900 +++ b/Symmetric.agda Tue Aug 18 23:21:03 2020 +0900 @@ -121,38 +121,48 @@ p→ x | tri> ¬a ¬b c = fin+1 (perm ⟨$⟩ʳ (fromℕ≤ (pred<n {_} {x} 0<s ))) p← : Fin (suc (suc n)) → Fin (suc (suc n)) - p← x with <-cmp (toℕ x) (suc n) - p← x | tri< a ¬b ¬c = fin+1 (perm ⟨$⟩ˡ (fromℕ≤ x<sn)) where + p← x = lemma (suc n) refl x where + lemma : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → Fin (suc (suc n)) + lemma i refl x with <-cmp (toℕ x) i + lemma i refl x | tri< a ¬b ¬c = fin+1 (perm ⟨$⟩ˡ (fromℕ≤ x<sn)) where x<sn : toℕ x < suc n x<sn = a - p← x | tri≈ ¬a b ¬c = fromℕ≤ (s≤s (s≤s m<n)) - p← x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) - + lemma i refl x | tri≈ ¬a b ¬c = fromℕ≤ (s≤s (s≤s m<n)) + lemma i refl x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x piso← x with <-cmp (toℕ x) m piso← x | tri< a ¬b ¬c = {!!} piso← x | tri≈ ¬a refl ¬c = begin p← ( fromℕ≤ a<sa ) - ≡⟨ {!!} ⟩ + ≡⟨ lem4 refl ⟩ fromℕ≤ (s≤s (s≤s m<n)) - ≡⟨ {!!} ⟩ + ≡⟨ {!!} ⟩ x ∎ where open ≡-Reasoning lem4 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ {suc n} a<sa → p← x ≡ fromℕ≤ (s≤s (s≤s m<n)) lem4 {x} refl with <-cmp (toℕ x) (suc n) lem4 refl | tri< a ¬b ¬c = {!!} - lem4 refl | tri≈ ¬a b ¬c = {!!} + lem4 refl | tri≈ ¬a b ¬c = refl lem4 refl | tri> ¬a ¬b c = {!!} piso← x | tri> ¬a ¬b c = {!!} piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x - piso→ x with <-cmp (toℕ x) (suc n) - piso→ x | tri< a ¬b ¬c = {!!} - piso→ x | tri≈ ¬a b ¬c = begin - {!!} -- fromℕ≤ (s≤s (s≤s m<n)) + piso→ x = lemma2 (suc n) refl x where + lemma2 : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x + lemma2 i refl x with <-cmp (toℕ x) i + lemma2 i refl x | tri< a ¬b ¬c = {!!} + lemma2 i refl x | tri≈ ¬a b ¬c = begin + p→ (fromℕ≤ (s≤s (s≤s m<n))) + ≡⟨ lem5 refl ⟩ + fromℕ≤ a<sa ≡⟨ {!!} ⟩ x ∎ where open ≡-Reasoning - piso→ x | tri> ¬a ¬b c = {!!} + lem5 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → p→ x ≡ fromℕ≤ a<sa + lem5 refl with <-cmp (toℕ x) m + lem5 refl | tri< a ¬b ¬c = {!!} + lem5 refl | tri≈ ¬a refl ¬c = refl + lem5 refl | tri> ¬a ¬b c = {!!} + lemma2 i refl x | tri> ¬a ¬b c = {!!}