Mercurial > hg > Members > kono > Proof > galois
changeset 121:54035eed6b9b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Sep 2020 12:37:54 +0900 |
parents | 77cb357b81a9 |
children | 61310d395c1b |
files | Putil.agda Solvable.agda sym3.agda |
diffstat | 3 files changed, 64 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Thu Sep 03 20:24:00 2020 +0900 +++ b/Putil.agda Fri Sep 04 12:37:54 2020 +0900 @@ -418,6 +418,8 @@ pswap-dist1 (suc zero) = refl pswap-dist1 (suc (suc q)) = cong ( λ k → suc (suc k) ) refl +infixr 100 _::_ + data FL : (n : ℕ )→ Set where f0 : FL 0 _::_ : { n : ℕ } → Fin (suc n ) → FL n → FL (suc n)
--- a/Solvable.agda Thu Sep 03 20:24:00 2020 +0900 +++ b/Solvable.agda Fri Sep 04 12:37:54 2020 +0900 @@ -84,3 +84,9 @@ (g ⁻¹ ∙ g ) ≈⟨ proj₁ inverse _ ⟩ ε ∎ where open EqReasoning (Algebra.Group.setoid G) + +comm-cong-l : {g h h1 : Carrier } → h ≈ h1 → [ h , g ] ≈ [ h1 , g ] +comm-cong-l {g} {h} {h1} h=h1 = ∙-cong (∙-cong (∙-cong (⁻¹-cong h=h1 ) grefl ) h=h1 ) grefl + +comm-cong-r : {g h g1 : Carrier } → g ≈ g1 → [ h , g ] ≈ [ h , g1 ] +comm-cong-r {g} {h} {g1} g=g1 = ∙-cong (∙-cong (∙-cong grefl (⁻¹-cong g=g1) ) grefl ) g=g1
--- a/sym3.agda Thu Sep 03 20:24:00 2020 +0900 +++ b/sym3.agda Fri Sep 04 12:37:54 2020 +0900 @@ -17,7 +17,11 @@ open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin -open import Data.Fin.Permutation +open import Data.Fin.Permutation hiding (_∘ₚ_) + +infixr 200 _∘ₚ_ +_∘ₚ_ = Data.Fin.Permutation._∘ₚ_ + sym3solvable : solvable (Symmetric 3) solvable.dervied-length sym3solvable = 2 @@ -52,19 +56,60 @@ stage1 x = Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x open import logic + + p33=4 : ( p3 ∘ₚ p3 ) =p= p4 + p33=4 = pleq _ _ refl + + p44=3 : ( p4 ∘ₚ p4 ) =p= p3 + p44=3 = pleq _ _ refl + + p34=0 : ( p3 ∘ₚ p4 ) =p= pid + p34=0 = pleq _ _ refl + + p43=0 : ( p4 ∘ₚ p3 ) =p= pid + p43=0 = pleq _ _ refl + + open ≡-Reasoning + + st01 : ( x y : Permutation 3 3) → x =p= p3 → y =p= p3 → x ∘ₚ y =p= p4 + st01 x y s t = record { peq = λ q → ( begin + (x ∘ₚ y) ⟨$⟩ʳ q + ≡⟨ peq ( presp s t ) q ⟩ + ( p3 ∘ₚ p3 ) ⟨$⟩ʳ q + ≡⟨ peq p33=4 q ⟩ + p4 ⟨$⟩ʳ q + ∎ ) } + + st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) + st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h + ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (record { peq = λ q → begin ( + [ g , h ] ⟨$⟩ʳ q + ≡⟨ ( peq (comm-cong-l {h} {g} {pid} (FL-inject ge )) ) q ⟩ + [ pid , h ] ⟨$⟩ʳ q + ≡⟨ peq (idcomtl h) q ⟩ + q + ∎ ) } ) + ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = + case1 (record { peq = λ q → trans (( peq (comm-cong-r {h} {g} {pid} (FL-inject he )) ) q) (peq (idcomtr g) q) } ) + ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) stage12 x uni = case1 prefl - stage12 x (comm x1 y1 ) = {!!} - stage12 _ (gen {x} {y} sx sy) with stage12 x sx | stage12 y sy -- x =p= pid : t , y =p= pid : s - ... | case1 t | case1 s = case1 ( {!!} ) - ... | case1 t | case2 (case1 x₁) = {!!} - ... | case1 t | case2 (case2 x₁) = {!!} - ... | case2 t | case1 s = {!!} - ... | case2 (case1 s) | case2 (case1 t) = case2 (case2 (pleq _ _ {!!} )) - ... | case2 (case1 s) | case2 (case2 t) = {!!} - ... | case2 (case2 s) | case2 (case1 t) = {!!} - ... | case2 (case2 s) | case2 (case2 t) = {!!} + stage12 x (comm {g} {h} x1 y1 ) = st02 g h + stage12 _ (gen {x} {y} sx sy) with stage12 x sx | stage12 y sy + ... | case1 t | case1 s = case1 ( record { peq = λ q → peq (presp t s) q} ) + ... | case1 t | case2 (case1 s) = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case1 t | case2 (case2 s) = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case1 t) | case1 s = case2 (case1 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case2 t) | case1 s = case2 (case2 ( record { peq = λ q → peq (presp t s ) q } )) + ... | case2 (case1 s) | case2 (case1 t) = case2 (case2 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p33=4 q) } ) + ... | case2 (case1 s) | case2 (case2 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p34=0 q) } + ... | case2 (case2 s) | case2 (case1 t) = case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p43=0 q) } + ... | case2 (case2 s) | case2 (case2 t) = case2 (case1 record { peq = λ q → trans (peq ( presp s t ) q) ( peq p44=3 q) } ) stage12 _ (ccong {y} x=y sx) with stage12 y sx ... | case1 id = case1 ( ptrans (psym x=y ) id ) ... | case2 (case1 x₁) = case2 (case1 ( ptrans (psym x=y ) x₁ ))