Mercurial > hg > Members > kono > Proof > galois
changeset 81:59aaf2000591
plist0
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Aug 2020 19:09:32 +0900 |
parents | b0c344ece453 |
children | fcb9e29d1894 |
files | Putil.agda sym5.agda |
diffstat | 2 files changed, 17 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Wed Aug 26 18:19:40 2020 +0900 +++ b/Putil.agda Wed Aug 26 19:09:32 2020 +0900 @@ -157,9 +157,22 @@ pleq0 () pleq {suc n} x y eq = record { peq = λ q → pleq1 n a<sa eq q fin<n } where pleq1 : (i : ℕ ) → (i<sn : i < suc n ) → plist2 x i i<sn ≡ plist2 y i i<sn → (q : Fin (suc n)) → toℕ q < suc i → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q - pleq1 zero i<sn eq q (s≤s q<i) = {!!} + pleq1 zero i<sn eq q q<i with <-cmp (toℕ q) zero + ... | tri< () ¬b ¬c + ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) + ... | tri≈ ¬a b ¬c = begin + x ⟨$⟩ʳ q + ≡⟨ cong ( λ k → x ⟨$⟩ʳ k ) (toℕ-injective b )⟩ + x ⟨$⟩ʳ zero + ≡⟨ toℕ-injective (headeq eq) ⟩ + y ⟨$⟩ʳ zero + ≡⟨ cong ( λ k → y ⟨$⟩ʳ k ) (sym (toℕ-injective b )) ⟩ + y ⟨$⟩ʳ q + ∎ where + open ≡-Reasoning pleq1 (suc i) (s≤s i<sn) eq q q<i with <-cmp (toℕ q) (suc i) ... | tri< a ¬b ¬c = pleq1 i (<-trans i<sn a<sa ) (taileq eq) q a + ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) ... | tri≈ ¬a b ¬c = begin x ⟨$⟩ʳ q ≡⟨ cong (λ k → x ⟨$⟩ʳ k) (pleq3 b) ⟩ @@ -182,7 +195,6 @@ ∎ ) where open ≡-Reasoning pleq2 : toℕ ( x ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) ≡ toℕ ( y ⟨$⟩ʳ (suc (fromℕ< i<sn)) ) pleq2 = headeq eq - ... | tri> ¬a ¬b c = ⊥-elim (nat-≤> c q<i ) data FL : (n : ℕ )→ Set where f0 : FL 0
--- a/sym5.agda Wed Aug 26 18:19:40 2020 +0900 +++ b/sym5.agda Wed Aug 26 19:09:32 2020 +0900 @@ -142,9 +142,9 @@ triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s z≤n)) = {!!} triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s z≤n))) = {!!} triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) = - record { dba0<3 = # 1 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 3 ; abc= = tt7 } where + record { dba0<3 = # 1 ; dba1<4 = fromℕ< a<sa ; aec0<3 = # 0 ; aec1<4 = # 3 ; abc= = tt7 } where tt7 : abc (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) =p= - [ dba (fin≤n {3} (# 1))(fin≤n {4} (# 4)) , aec (fin≤n {3} (# 0)) (fin≤n {4} (# 3)) ] + [ dba (fin≤n {3} (# 1))(fin≤n {4} (fromℕ< a<sa)) , aec (fin≤n {3} (# 0)) (fin≤n {4} (# 3)) ] tt7 = record { peq = λ q → lll q } where lll : (q : Fin 5) → _ lll zero = refl @@ -152,6 +152,7 @@ lll (suc (suc zero)) = refl lll (suc (suc (suc zero))) = refl lll (suc (suc (suc (suc zero)))) = refl + tt19 = {!!} dervie-any-3rot : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → deriving n (abc i<3 j<4 )