Mercurial > hg > Members > kono > Proof > galois
changeset 109:5d60a060453c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Sep 2020 20:00:24 +0900 |
parents | d9cd155310e5 |
children | cb3281e83229 |
files | Putil.agda |
diffstat | 1 files changed, 14 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Tue Sep 01 19:03:21 2020 +0900 +++ b/Putil.agda Tue Sep 01 20:00:24 2020 +0900 @@ -28,15 +28,6 @@ -- An inductive construction of permutation --- Todo --- --- describe property of pins ( move 0 to any position) --- describe property of shrink ( remove one column ) --- prove FL→iso --- prove FL←iso - --- we already have refl and trans in the Symmetric Group - pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where p→ : Fin (suc n) → Fin (suc n) @@ -499,7 +490,6 @@ ≡⟨ plem2 plem3 ⟩ x ∎ where - open ≡-Reasoning plem2 : suc t1 ≡ suc x → t1 ≡ x plem2 refl = refl plem3 : suc t1 ≡ suc x @@ -519,9 +509,17 @@ shrink-iso2 : { n : ℕ } → {perm : Permutation (suc n) (suc n)} → (p=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0) → pprep (shrink perm p=0) =p= perm shrink-iso2 {n} {perm} p=0 = record { peq = s001 } where - s001 : (q : Fin (suc n)) → (pprep (shrink perm p=0) ⟨$⟩ʳ q) ≡ (perm ⟨$⟩ʳ q) - s001 zero = {!!} - s001 (suc q) = {!!} + s001 : (q : Fin (suc n)) → (pprep (shrink perm p=0) ⟨$⟩ʳ q) ≡ perm ⟨$⟩ʳ q + s001 zero = begin + zero + ≡⟨ sym ( inverseʳ perm ) ⟩ + perm ⟨$⟩ʳ ( perm ⟨$⟩ˡ zero ) + ≡⟨ cong (λ k → perm ⟨$⟩ʳ k ) p=0 ⟩ + perm ⟨$⟩ʳ zero + ∎ + s001 (suc q) with perm ⟨$⟩ʳ (suc q) | inspect (_⟨$⟩ʳ_ perm ) (suc q) + ... | zero | record {eq = e} = ⊥-elim (sh1 perm p=0 {q} e) + ... | suc t | e = refl shrink-cong : { n : ℕ } → {x y : Permutation (suc n) (suc n)} @@ -594,10 +592,6 @@ t6 = perm→FL t4 ----- --- if n is fixed, perm→FL ( FL→perm fl ) ≡ fl is refl for each concrete fl --- so we may prove this easily by co-induction --- FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl FL→iso {suc n} (x :: fl) = cong₂ ( λ j k → j :: k ) f001 f002 where @@ -650,7 +644,9 @@ (pprep (FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) ) ⟨$⟩ʳ q ≡⟨ peq (presp (pprep-cong (FL←iso _ ) ) prefl ) q ⟩ (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q - ≡⟨ {!!} ⟩ + ≡⟨ peq (passoc _ _ _ ) q ⟩ + (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm))) ⟨$⟩ʳ (( pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q ) + ≡⟨ peq (shrink-iso2 (p=0 perm)) ((pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q) ⟩ ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q ≡⟨ peq (passoc _ _ _ ) q ⟩ (perm ∘ₚ (flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ))) ⟨$⟩ʳ q