Mercurial > hg > Members > kono > Proof > galois
changeset 20:65e6c97a03cd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 18 Aug 2020 23:39:31 +0900 |
parents | 5091302d990d |
children | 270b28c96154 |
files | Symmetric.agda |
diffstat | 1 files changed, 8 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/Symmetric.agda Tue Aug 18 23:21:03 2020 +0900 +++ b/Symmetric.agda Tue Aug 18 23:39:31 2020 +0900 @@ -31,7 +31,7 @@ lemma2 : :→-to-Π (λ x → f1 (f1 x)) InverseOf :→-to-Π f1 lemma2 = record { left-inverse-of = λ x → lemma3 x ; right-inverse-of = λ x → lemma3 x } -finpid : (n i : ℕ ) → i Data.Nat.< n → List (Fin n) +finpid : (n i : ℕ ) → i < n → List (Fin n) finpid (suc n) zero _ = fromℕ≤ {zero} (s≤s z≤n) ∷ [] finpid (suc n) (suc i) (s≤s lt) = fromℕ≤ (s≤s lt) ∷ finpid (suc n) i (<-trans lt a<sa) @@ -103,12 +103,15 @@ open import Relation.Binary.Core open import fin -flist>0 : ( n : ℕ ) → n Data.Nat.> 0 → length (fpid n) ≡ n +flist>0 : ( n : ℕ ) → n > 0 → length (fpid n) ≡ n flist>0 (suc n) _ = fn (suc n) n a<sa where - fn : (n i : ℕ ) → (i<n : i Data.Nat.< n ) → (length (finpid n i i<n)) ≡ suc i + fn : (n i : ℕ ) → (i<n : i < n ) → (length (finpid n i i<n)) ≡ suc i fn (suc n) zero _ = refl fn (suc n) (suc i) (s≤s i<n) = cong (λ k → suc k ) (fn (suc n) i (<-trans i<n a<sa )) +perm→all : { n : ℕ } → (perm : Permutation n n ) → (f : Fin n ) → ¬ ( ( g : Fin n) → ¬ (perm ⟨$⟩ʳ f ≡ g )) +perm→all = {!!} + fperm : {n m : ℕ} → m < n → Permutation n n → Permutation (suc n) (suc n) fperm {zero} () fperm {suc n} {m} (s≤s m<n) perm = permutation p→ p← record { left-inverse-of = piso← ; right-inverse-of = piso→ } where @@ -130,39 +133,6 @@ lemma i refl x | tri≈ ¬a b ¬c = fromℕ≤ (s≤s (s≤s m<n)) lemma i refl x | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c fin<n ) piso← : (x : Fin (suc (suc n))) → p← ( p→ x ) ≡ x - piso← x with <-cmp (toℕ x) m - piso← x | tri< a ¬b ¬c = {!!} - piso← x | tri≈ ¬a refl ¬c = begin - p← ( fromℕ≤ a<sa ) - ≡⟨ lem4 refl ⟩ - fromℕ≤ (s≤s (s≤s m<n)) - ≡⟨ {!!} ⟩ - x - ∎ where - open ≡-Reasoning - lem4 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ {suc n} a<sa → p← x ≡ fromℕ≤ (s≤s (s≤s m<n)) - lem4 {x} refl with <-cmp (toℕ x) (suc n) - lem4 refl | tri< a ¬b ¬c = {!!} - lem4 refl | tri≈ ¬a b ¬c = refl - lem4 refl | tri> ¬a ¬b c = {!!} - piso← x | tri> ¬a ¬b c = {!!} + piso← x = {!!} piso→ : (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x - piso→ x = lemma2 (suc n) refl x where - lemma2 : (i : ℕ ) → i ≡ suc n → (x : Fin (suc (suc n))) → p→ ( p← x ) ≡ x - lemma2 i refl x with <-cmp (toℕ x) i - lemma2 i refl x | tri< a ¬b ¬c = {!!} - lemma2 i refl x | tri≈ ¬a b ¬c = begin - p→ (fromℕ≤ (s≤s (s≤s m<n))) - ≡⟨ lem5 refl ⟩ - fromℕ≤ a<sa - ≡⟨ {!!} ⟩ - x - ∎ where - open ≡-Reasoning - lem5 : {x : Fin (suc (suc n)) } → x ≡ fromℕ≤ (s≤s (s≤s m<n)) → p→ x ≡ fromℕ≤ a<sa - lem5 refl with <-cmp (toℕ x) m - lem5 refl | tri< a ¬b ¬c = {!!} - lem5 refl | tri≈ ¬a refl ¬c = refl - lem5 refl | tri> ¬a ¬b c = {!!} - lemma2 i refl x | tri> ¬a ¬b c = {!!} - + piso→ x = {!!}