Mercurial > hg > Members > kono > Proof > galois
changeset 107:7e63fb16dc64
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Sep 2020 18:56:10 +0900 |
parents | 02f54eab9205 |
children | d9cd155310e5 |
files | Putil.agda |
diffstat | 1 files changed, 14 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Tue Sep 01 18:26:21 2020 +0900 +++ b/Putil.agda Tue Sep 01 18:56:10 2020 +0900 @@ -516,6 +516,10 @@ shrink-iso : { n : ℕ } → {perm : Permutation n n} → shrink (pprep perm) refl =p= perm shrink-iso {n} {perm} = record { peq = λ q → refl } +shrink-iso2 : { n : ℕ } → {perm : Permutation (suc n) (suc n)} + → (p=0 : perm ⟨$⟩ˡ (# 0) ≡ # 0) → pprep (shrink perm p=0) =p= pid +shrink-iso2 = {!!} + shrink-cong : { n : ℕ } → {x y : Permutation (suc n) (suc n)} → x =p= y → (x=0 : x ⟨$⟩ˡ (# 0) ≡ # 0 ) → (y=0 : y ⟨$⟩ˡ (# 0) ≡ # 0 ) → shrink x x=0 =p= shrink y y=0 @@ -639,13 +643,18 @@ FL←iso {suc n} perm = record { peq = λ q → ( begin FL→perm ( perm→FL perm ) ⟨$⟩ʳ q ≡⟨⟩ - (pprep (FL→perm (perm→FL f001)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) ) ⟨$⟩ʳ q - ≡⟨ peq (presp {suc n} {pprep (FL→perm (perm→FL f001))} {_} {pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) } (pprep-cong (FL←iso _)) record { peq = λ q → refl } ) q ⟩ - (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q + (pprep (FL→perm (perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ) ) ⟨$⟩ʳ q + ≡⟨ peq (presp (pprep-cong (FL←iso _ ) ) prefl ) q ⟩ + (pprep (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm)) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q + ≡⟨ {!!} ⟩ + ((perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) )) ⟨$⟩ʳ q + ≡⟨ peq (passoc _ _ _ ) q ⟩ + (perm ∘ₚ (flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)))) ∘ₚ pins ( toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0)) ))) ⟨$⟩ʳ q + ≡⟨ {!!} ⟩ + ( perm ∘ₚ pid ) ⟨$⟩ʳ q ≡⟨ {!!} ⟩ perm ⟨$⟩ʳ q - ∎ ) } where - f001 = shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) + ∎ ) } lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( a≤sa )