Mercurial > hg > Members > kono > Proof > galois
changeset 124:803a45b280ef
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Sep 2020 19:07:39 +0900 |
parents | 465c42c9a99e |
children | 11ccc9fe91c3 |
files | sym3.agda |
diffstat | 1 files changed, 27 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/sym3.agda Fri Sep 04 18:33:25 2020 +0900 +++ b/sym3.agda Fri Sep 04 19:07:39 2020 +0900 @@ -97,18 +97,24 @@ -- ∎ ) } st02 : ( g h : Permutation 3 3) → ([ g , h ] =p= pid) ∨ ([ g , h ] =p= p3) ∨ ([ g , h ] =p= p4) - st02 = {!!} --- st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h --- ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) --- ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) --- ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} --- ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} --- ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = {!!} --- ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} --- ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} --- ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} --- ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} --- ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} + st02 g h with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h + ... | (zero :: (zero :: (zero :: f0))) | t | record { eq = ge } | te = case1 (ptrans (comm-resp {g} {h} {pid} (FL-inject ge ) prefl ) (idcomtl h) ) + ... | s | (zero :: (zero :: (zero :: f0))) | se | record { eq = he } = case1 (ptrans (comm-resp {g} {h} {_} {pid} prefl (FL-inject he ))(idcomtr g) ) + ... | (zero :: (suc zero) :: (zero :: f0 )) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc zero) :: (zero :: (zero :: f0 )) | (suc zero) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | (suc (suc zero)) :: (zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | record { eq = ge } | record { eq = he } = + case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) ) + ... | (zero :: (suc zero) :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc zero) :: (zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc zero) :: (suc zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc (suc zero)) :: (zero :: (zero :: f0 )) | t | se | te = {!!} + ... | (suc (suc zero)) :: (suc zero) :: (zero :: f0) | t | se | te = {!!} stage12 : (x : Permutation 3 3) → stage1 x → ( x =p= pid ) ∨ ( x =p= p3 ) ∨ ( x =p= p4 ) stage12 = {!!} @@ -152,13 +158,14 @@ ≡⟨ f=e q ⟩ q ∎ - solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y - ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) - ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) - ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) - ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } - ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } - ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } - ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } + solved1 _ (comm {g} {h} x y) = {!!} +-- solved1 _ (comm {g} {h} x y) with stage12 g x | stage12 h y +-- ... | case1 t | case1 s = ptrans (comm-resp t s) (comm-refl {pid} prefl) +-- ... | case1 t | case2 s = ptrans (comm-resp {g} {h} {pid} t prefl) (idcomtl h) +-- ... | case2 t | case1 s = ptrans (comm-resp {g} {h} {_} {pid} prefl s) (idcomtr g) +-- ... | case2 (case1 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com33 q) } +-- ... | case2 (case2 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com44 q) } +-- ... | case2 (case1 t) | case2 (case2 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com34 q) } +-- ... | case2 (case2 t) | case2 (case1 s) = record { peq = λ q → trans ( peq ( comm-resp {g} {h} t s ) q ) (peq com43 q) } -- = ptrans ( comm-resp {g} {h} t s ) ( comm-refl ? )