Mercurial > hg > Members > kono > Proof > galois
changeset 247:80b9fb5f80ab
slightly better
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 11 Dec 2020 07:38:09 +0900 |
parents | d8f6d04edbbc |
children | 38e56ea7d09f |
files | FLComm.agda |
diffstat | 1 files changed, 16 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Thu Dec 10 19:15:25 2020 +0900 +++ b/FLComm.agda Fri Dec 11 07:38:09 2020 +0900 @@ -180,7 +180,7 @@ record AnyFin (n : ℕ) : Set where field allFin : FList (suc n) - anyF : {i : ℕ} → (i<n : i < suc n) → Any (fromℕ< i<n :: FL0 ≡_ ) allFin + anyF : (x : Fin (suc n)) → Any (x :: FL0 ≡_ ) allFin open AnyFin @@ -188,27 +188,27 @@ anyFL01 zero = record { allFL = (zero :: f0) ∷# [] ; anyP = λ x → anyFL2 x ((zero :: f0) ∷# []) refl } anyFL01 (suc n) = record { allFL = commList anyC ; anyP = anyFL02 } where anyFL04 : (n : ℕ) → AnyFin n - anyFL04 n = record { allFin = anyFL05 a<sa ; anyF = λ {j} j<n → anyFL06 {n} {j} a<sa j<n (anyFL07 j<n) } where - anyFL08 : {i n : ℕ } (i<n : suc i ≤ n) (j<n : suc (suc i) ≤ suc n) → fromℕ< (≤-pred j<n) ≡ fromℕ< i<n - anyFL08 {zero} {.(suc _)} (s≤s z≤n) (s≤s (s≤s j<n)) = refl - anyFL08 {suc i} {.(suc _)} (s≤s i<n) (s≤s j<n) = cong (λ k → suc k ) (anyFL08 (i<n) (j<n) ) - anyFL07 : {j : ℕ } → j < suc n → j ≤ n - anyFL07 (s≤s j<n) = j<n + anyFL04 n = record { allFin = anyFL05 a<sa ; anyF = λ x → anyFL06 a<sa x fin<n } where + anyFL08 : {n i : ℕ} {x : Fin (suc n)} {i<n : suc i < suc n} → toℕ x ≡ suc i → x ≡ suc (fromℕ< (≤-pred i<n)) + anyFL08 {n} {i} {x} {i<n} eq = toℕ-injective ( begin + toℕ x ≡⟨ eq ⟩ + suc i ≡⟨ cong suc (≡-sym (toℕ-fromℕ< _ )) ⟩ + suc (toℕ (fromℕ< (≤-pred i<n)) ) + ∎ ) where open ≡-Reasoning anyFL05 : {i : ℕ} → (i < suc n) → FList (suc n) anyFL05 {0} (s≤s z≤n) = zero :: FL0 ∷# [] anyFL05 {suc i} (s≤s i<n) = FLinsert (fromℕ< (s≤s i<n) :: FL0) (anyFL05 {i} (<-trans i<n a<sa)) - anyFL06 : {i j : ℕ} (i<n : i < suc n) → (j<n : j < suc n) → (j≤i : j ≤ i) → Any (_≡_ (fromℕ< j<n :: FL0)) (anyFL05 i<n) - anyFL06 {0} {zero} (s≤s z≤n) j<n j≤i = here refl - anyFL06 {suc i} {0} (s≤s i<n) j<n j≤i = insAny _ (anyFL06 {i} {0} (<-trans i<n a<sa) j<n z≤n) - anyFL06 {suc i} {j} (s≤s i<n) j<n (s≤s j≤i) with <-cmp j (suc i) - ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (s≤s j≤i) c) - ... | tri< (s≤s a) ¬b ¬c = insAny _ (anyFL06 {i} {j} (<-trans i<n a<sa) j<n a) - ... | tri≈ ¬a refl ¬c = subst (λ k → Any (_≡_ _) (FLinsert (suc k :: FL0) (anyFL05 (<-trans i<n a<sa))) ) (anyFL08 i<n j<n) - (x∈FLins (suc (fromℕ< (≤-pred j<n)) :: FL0) (anyFL05 (<-trans i<n a<sa))) + anyFL06 : {i : ℕ} → (i<n : i < suc n) → (x : Fin (suc n)) → toℕ x < suc i → Any (_≡_ (x :: FL0)) (anyFL05 i<n) + anyFL06 (s≤s z≤n) zero (s≤s lt) = here refl + anyFL06 {suc i} (s≤s (s≤s i<n)) x (s≤s lt) with <-cmp (toℕ x) (suc i) + ... | tri< a ¬b ¬c = insAny _ (anyFL06 (<-trans (s≤s i<n) a<sa) x a) + ... | tri≈ ¬a b ¬c = subst (λ k → Any (_≡_ (x :: FL0)) (FLinsert (k :: FL0) (anyFL05 {i} (<-trans (s≤s i<n) a<sa)))) + (anyFL08 {n} {i} {x} {s≤s (s≤s i<n)} b) (x∈FLins (x :: FL0) (anyFL05 {i} (<-trans (s≤s i<n) a<sa))) + ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c (s≤s lt) ) anyC = anyComm (allFin (anyFL04 (suc n))) (allFL (anyFL01 n)) (λ p q → FLpos p :: q ) anyFL02 : (x : FL (suc (suc n))) → Any (_≡_ x) (commList anyC) anyFL02 (x :: y) = commAny anyC (x :: FL0) y - (subst (λ k → Any (_≡_ (k :: FL0) ) _) (fromℕ<-toℕ _ _) (anyF (anyFL04 (suc n)) x≤n )) (anyP (anyFL01 n) y) where + (subst (λ k → Any (_≡_ (k :: FL0) ) _) (fromℕ<-toℕ _ _) (anyF (anyFL04 (suc n)) (fromℕ< x≤n) )) (anyP (anyFL01 n) y) where x≤n : suc (toℕ x) ≤ suc (suc n) x≤n = toℕ<n x