Mercurial > hg > Members > kono > Proof > galois
changeset 58:80d61b6776d3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Aug 2020 20:07:23 +0900 |
parents | 518d364a58a3 |
children | afa989a4b7e9 |
files | Putil.agda |
diffstat | 1 files changed, 22 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Sun Aug 23 19:23:08 2020 +0900 +++ b/Putil.agda Sun Aug 23 20:07:23 2020 +0900 @@ -264,7 +264,8 @@ FL→perm (x :: fl) = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) t1 = plist (shrink (pid {3} ∘ₚ (pins (n≤ 1))) refl) -t3 = plist ( FL→perm ((# 1) :: ((# 0) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (0 ∷ 1 ∷ 2 ∷ []) ∷ +t3 = plist (pid {4} ) + ∷ plist ( FL→perm ((# 0) :: ((# 0) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (0 ∷ 1 ∷ 2 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 0) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (0 ∷ 2 ∷ 1 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) -- (1 ∷ 0 ∷ 2 ∷ []) ∷ ∷ plist ( FL→perm ((# 1) :: ((# 1) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) -- (2 ∷ 0 ∷ 1 ∷ []) ∷ @@ -274,25 +275,36 @@ ∷ plist ( (flip (FL→perm ((# 1) :: ((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) ))) ∘ₚ (FL→perm ((# 1) :: (((# 1) :: ( (# 0) :: (( # 0 ) :: f0 )) )))) )) ∷ [] +t4 = FL→perm ((# 1) :: ((# 1) :: ( (# 1) :: (( # 0 ) :: f0 )) )) +-- t5 = plist t4 ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 3 ) )) +t5 = plist (flip t4) + ∷ ( toℕ (t4 ⟨$⟩ˡ fromℕ≤ a<sa) ∷ [] ) + ∷ ( toℕ (t4 ⟨$⟩ʳ fromℕ≤ ( fin<n {_} {(t4 ⟨$⟩ˡ fromℕ≤ a<sa)})) ∷ [] ) + ∷ plist (shrink ( t4 ∘ₚ flip (pins ( n≤ 3 ) ) ) refl ) + ∷ plist ( FL→perm (((# 1) :: ( (# 1) :: (( # 0 ) :: f0 )) ))) + ∷ [] + + perm→FL : {n : ℕ } → Permutation n n → FL n perm→FL {zero} perm = f0 -perm→FL {suc n} perm = (perm ⟨$⟩ˡ fromℕ≤ a<sa ) :: perm→FL ( shrink fl1 {!!} ) where +perm→FL {suc n} perm = (perm ⟨$⟩ˡ fromℕ≤ a<sa ) :: perm→FL ( shrink fl1 fl4 ) where + fl2 : Fin (suc n) + fl2 = perm ⟨$⟩ʳ fromℕ≤ (fin<n {suc n} {perm ⟨$⟩ˡ fromℕ≤ a<sa} ) + fl3 : toℕ fl2 < n + fl3 = {!!} fl1 : Permutation (suc n) (suc n) - fl1 = perm ∘ₚ pinv ( pins (fin<n {n} {{!!}})) - fl1=pprep : perm =p= pprep ( shrink fl1 {!!} ) - fl1=pprep = {!!} + fl1 = perm ∘ₚ pinv ( pins fl3 ) + fl4 : (fl1 ⟨$⟩ˡ fromℕ n) ≡ fromℕ n + fl4 = {!!} FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl -FL→iso (x :: fl) = {!!} --with FL→iso fl --- ... | t = {!!} +FL→iso (x :: fl) = {!!} open _=p=_ FL←iso : {n : ℕ } → (perm : Permutation n n ) → FL→perm ( perm→FL perm ) =p= perm FL←iso {0} perm = record { peq = λ () } -FL←iso {suc n} perm = {!!} where - fl0 : {n : ℕ } → (fl : FL n ) → {!!} - fl0 = {!!} +FL←iso {suc n} perm = {!!} all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) all-perm n = pls6 n where